学习资料
8.(3.00分)(2018?陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是( )
A.AB=EF B.AB=2EF C.AB=EF D.AB=EF
【考点】L8:菱形的性质;LN:中点四边形. 【专题】17 :推理填空题.
【分析】连接AC、BD交于O,根据菱形的性质得到AC⊥BD,OA=OC,OB=OD,根据三角形中位线定理、矩形的判定定理得到四边形EFGH是矩形,根据勾股定理计算即可.
【解答】解:连接AC、BD交于O, ∵四边形ABCD是菱形, ∴AC⊥BD,OA=OC,OB=OD,
∵点E、F、G、H分别是边AB、BC、CD和DA的中点,
∴EF=AC,EF∥AC,EH=BD,EH∥BD, ∴四边形EFGH是矩形, ∵EH=2EF, ∴OB=2OA,
精品文档
学习资料
∴AB=∴AB=
EF,
=OA,
故选:D.
【点评】本题考查的是中点四边形,掌握菱形的性质、三角形中位线定理是解题的关键.
9.(3.00分)(2018?陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为( )
A.15° B.35° C.25° D.45° 【考点】M5:圆周角定理.
【专题】1 :常规题型;559:圆的有关概念及性质.
【分析】根据等腰三角形性质知∠CBA=∠BCA=65°,∠A=50°,由平行线的性质及圆周角定理得∠ABD=∠ACD=∠A=50°,从而得出答案. 【解答】解:∵AB=AC、∠BCA=65°, ∴∠CBA=∠BCA=65°,∠A=50°,
精品文档
学习资料
∵CD∥AB,
∴∠ACD=∠A=50°, 又∵∠ABD=∠ACD=50°, ∴∠DBC=∠CBA﹣∠ABD=15°, 故选:A.
【点评】本题主要考查圆周角定理,解题的关键是掌握等腰三角形的性质、圆周角定理、平行线的性质.
10.(3.00分)(2018?陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在( ) A.第一象限 B.第二象限
C.第三象限
D.第四象限
【考点】H3:二次函数的性质;HA:抛物线与x轴的交点. 【专题】53:函数及其图象.
【分析】把x=1代入解析式,根据y>0,得出关于a的不等式,得出a的取值范围后,利用二次函数的性质解答即可.
【解答】解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0, 解得:a>1,
所以可得:﹣,
,
精品文档
学习资料
所以这条抛物线的顶点一定在第三象限, 故选:C.
【点评】此题考查抛物线与x轴的交点,关键是得出a的取值范围,利用二次函数的性质解答.
二、填空题(共4小题,每小题3分,计12分) 11.(3.00分)(2018?陕西)比较大小:3 < “=”).
【考点】2A:实数大小比较.
【分析】首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.
【解答】解:32=9,∴3<
.
=10,
(填“>”、“<”或
【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.
12.(3.00分)(2018?陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为 72° .
【考点】L3:多边形内角与外角;MM:正多边形和圆. 【专题】552:三角形.
精品文档
相关推荐: