?x?my?1?222得3m?4y?6my?9?0; ?xy2?1??3?4??则|MN|?1?m2|y?y|?1?m2MN36m2?36?3m2?4?3m?42?12?m2?1?3m?42;
P4321N x4A42B12MQ234圆心A到PQ距离d?|?m??1?1?|1?m22?|2m|1?m2,
4m243m2?4?所以|PQ|?2|AQ|?d?216?,
21?m21?m221112?m?1?43m2?424m2?11?|MN|?|PQ|?????24??2?12,83221223m?41?m3m?43?2m?1?SMPNQ?
21.⑴ 由已知得:f'?x???x?1?ex?2a?x?1???x?1?ex?2a
x① 若a?0,那么f?x??0??x?2?e?0?x?2,f?x?只有唯一的零点x?2,不
??合题意;
② 若a?0,那么ex?2a?ex?0,
所以当x?1时,f'?x??0,f?x?单调递增 当x?1时,f'?x??0,f?x?单调递减
- 17 -
即:
x ???,1? ? 1 0 ?1,??? ? f'?x? f?x? ↓ 极小值 ↑ 故f?x?在?1,???上至多一个零点,在???,1?上至多一个零点 由于f?2??a?0,f?1???e?0,则f?2?f?1??0, 根据零点存在性定理,f?x?在?1,2?上有且仅有一个零点. 而当x?1时,ex?e,x?2??1?0,
故f?x???x?2?ex?a?x?1??e?x?2??a?x?1??a?x?1??e?x?1??e
22?e?e?4ae?e?e?4aefx?0则??的两根t1??1,t2??1, t1?t2,因为
2a2a222a?0,故当x?t1或x?t2时,a?x?1??e?x?1??e?0
2因此,当x?1且x?t1时,f?x??0
又f?1???e?0,根据零点存在性定理,f?x?在???,1?有且只有一个零点. 此时,f?x?在R上有且只有两个零点,满足题意.
e③ 若??a?0,则ln??2a??lne?1,
2当x?ln??2a?时,x?1?ln??2a??1?0,ex?2a?eln??2a??2a?0,
x即f'?x???x?1?e?2a?0,f?x?单调递增;
??当
ln??2a??x?1时,x?1?0,
ex?2a?eln??2a??2a?0,即
f'?x????1x??xx0e2,f??a?单调递减; ??当x?1时,x?1?0,ex?2a?eln??2a??2a?0,即f'?x??0,f?x?单调递增. 即:
x ???,ln??2a?? + ln??2a? 0 ?ln??2a?,1? - 1 0 ?1,??? + f'?x?
- 18 -
f?x? 而极大值
↑ 极大值 ↓ 极小值 ↑ f??ln??2a?????2a??ln??2a??2???a??ln??2a??1???a??ln??2a??2???1?0
2?2?故当x≤1时,f?x?在x?ln??2a?处取到最大值f??ln??2a???,那么f?x?≤f?x??0无解 fln0???2????a?恒成立,即
而当x?1时,f?x?单调递增,至多一个零点 此时f?x?在R上至多一个零点,不合题意.
e④ 若a??,那么ln??2a??1
2当x?1?ln??2a?时,x?1?0,ex?2a?eln??2a??2a?0,即f'?x??0,
f?x?单调递增
当x?1?ln??2a?时,x?1?0,ex?2a?eln??2a??2a?0,即f'?x??0,
f?x?单调递增
又f?x?在x?1处有意义,故f?x?在R上单调递增,此时至多一个零点,不合题意.
e⑤ 若a??,则ln??2a??1
2当x?1时,x?1?0,ex?2a?e1?2a?eln??2a??2a?0,即f'?x??0,
f?x?单调递增
当1?x?ln??2a?时,x?1?0,ex?2a?eln??2a??2a?0,即f'?x??0,
f?x?单调递减
当x?ln??2a?时,x?1?ln??2a??1?0,ex?2a?eln??2a??2a?0,即f'?x??0,
f?x?单调递增
即:
x ???,1? + 1 0 ?1,ln??2a?? - ln??2a? 0 ?ln??2a?,??? + f'?x?
- 19 -
f?x? ↑ 极大值 ↓ 极小值 ↑ 故当x≤ln??2a?时,f?x?在x?1处取到最大值f?1???e,那么f?x?≤?e?0恒成立,即f?x??0无解
当x?ln??2a?时,f?x?单调递增,至多一个零点 此时f?x?在R上至多一个零点,不合题意.
综上所述,当且仅当a?0时符合题意,即a的取值范围为?0,???.
⑵ 由已知得:f?x1??f?x2??0,不难发现x1?1,x2?1,
?x1?2?ex故可整理得:?a?2?x1?1?1?x2?2?ex?2?x2?1?2
?x?2?ex设g?x??2,则g?x1??g?x2?
?x?1??x?2??1xe,当x?1时,g'?x??0,g?x?单调递减;当x?1时,那么g'?x??3?x?1?g'?x??0,g?x?单调递增.
设m?0,构造代数式: g?1?m??g?1?m??m?11?m?m?11?m1?m1?m?m?12m?e?e?2e?e?1? m2m2mm?1??2设h?m??则h'?m??m?12me?1,m?0 m?12m2?m?1?2e2m?0,故h?m?单调递增,有h?m??h?0??0.
因此,对于任意的m?0,g?1?m??g?1?m?.
由g?x1??g?x2?可知x1、x2不可能在g?x?的同一个单调区间上,不妨设x1?x2,则必有x1?1?x2
令m?1?x1?0,则有g??1??1?x1????g??1??1?x1????g?2?x1??g?x1??g?x2?
- 20 -
相关推荐: