而2?x1?1,x2?1,g?x?在?1,???上单调递增,因此:g?2?x1??g?x2??2?x1?x2 整理得:x1?x2?2.
22.⑴ 设圆的半径为r,作OK?AB于K
?AOB?120? ∵OA?OB,?A?30?,OK?OA?sin30??∴OK?AB,∴AB与⊙O相切 ⑵ 方法一:
假设CD与AB不平行 CD与AB交于F
OA?r 2FK2?FC?FD① ∵A、B、C、D四点共圆
∴FC?FD?FA?FB??FK?AK??FK?BK? ∵AK?BK
22∴FC?FD??FK?AK??FK?AK??FK?AK②
由①②可知矛盾 ∴AB∥CD
方法二:
,四点共圆,不妨设圆心为T,因为OA?OB,TA?TB因为A,B,C,D所以O,T为AB的
中垂线上,同理OC?OD,TC?TD,所以OT为CD的中垂线,所以AB∥CD.
?x?acost23.⑴ ? (t均为参数)
?y?1?asint
- 21 -
∴x2??y?1??a2 ①
21?为圆心,a为半径的圆.方程为x2?y2?2y?1?a2?0 ∴C1为以?0,∵x2?y2??2,y??sin? ∴?2?2?sin??1?a2?0 ⑵ C2:??4cos?
两边同乘?得?2?4?cos???2?x2?y2,?cos??x
即为C1的极坐标方程
?x2?y2?4x
即?x?2??y2?4 ②
2C3:化为普通方程为y?2x
由题意:C1和C2的公共方程所在直线即为C3 ①—②得:4x?2y?1?a2?0,即为C3 ∴1?a2?0 ∴a?1
24.⑴ 如图所示:
??x?4,x≤?1?3?⑵ f?x???3x?2,?1?x?
2?3?4?x,x≥??2f?x??1
- 22 -
当x≤?1,x?4?1,解得x?5或x?3 ∴x≤?1
31,3x?2?1,解得x?1或x? 2313∴?1?x?或1?x?
323当x≥,4?x?1,解得x?5或x?3
23∴≤x?3或x?5 21综上,x?或1?x?3或x?5
31??∴f?x??1,解集为???,???1,3???5,???
3??当?1?x?
- 23 -
相关推荐: