例4 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( ) A. C. 答案 C 解析 如图所示,由球心作平面ABC的垂线, 则垂足为BC的中点M. 又AM=BC=, B.210 D.310 OM=AA1=6,所以球O的半径R=OA= =. 引申探究 1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少? 解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R,内切球的半径为r. 又正方体的棱长为4,故其体对角线长为4, 从而V外接球=πR3=π×(2)3=32π, V内切球=πr3=π×23=. 2.已知棱长为a的正四面体,则此正四面体的表面积S1与其内切球的表面积S2的比值为多少? 解 正四面体的表面积为S1=4··a2=a2,其内切球半径r为正四面体高的,即r=·a=a,因此内切球表面积为S2=4πr2=,则==. 3.已知侧棱和底面边长都是3的正四棱锥,则其外接球的半径是多少? 9 / 16 【本资料精心搜集整理而来,欢迎广大同仁惠存!】 解 依题意得,该正四棱锥的底面对角线的长为3×=6,高为 =3, 因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3. 思维升华 空间几何体与球接、切问题的求解方法 (1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解. (2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解. (20xx·全国丙卷)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( ) A.4π B. C.6π D.答案 B 解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V的最大值为. 15.巧用补形法解决立体几何问题 10 / 16 【本资料精心搜集整理而来,欢迎广大同仁惠存!】32π 3 典例 (20xx·青岛模拟)如图,在△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,则此几何体的体积为________. 思想方法指导 解答本题时可用“补形法”完成.“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”,将不规则的几何体补成规则的几何体等. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA′=BB′=CC′=8,所以V几何体=V三棱柱=×S△ABC×AA′=×24×8=96. 答案 96 1.已知某几何体的三视图如图所示,则该几何体的体积为( ) A.4+ B.4+ C.4+ D.4+π 答案 C 解析 由题意可知,几何体的体积为圆柱的体积加长方体的体积再减去与长方体等高的圆柱的体积的,即π·12·3+2·2·1-π·12·1=4+. 2.(20xx·大同模拟)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( ) A. C. 答案 B B. D.(4+π)3 11 / 16 【本资料精心搜集整理而来,欢迎广大同仁惠存!】 解析 由三视图可知该几何体是由一个半圆锥和一个四棱锥组成的,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2的正方形,它们的高均为.则V=··=.故选B. 3.(20xx·山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A. B. C. D.2π 答案 C 解析 过点C作CE垂直AD所在直线于点E,梯形ABCD绕AD所在直线旋转一周而形成的旋转体是由以线段AB的长为底面圆半径,线段BC为母线的圆柱挖去以线段CE的长为底面圆半径,ED为高的圆锥,如图所示,该几何体的体积为V=V圆柱-V圆锥=π·AB2·BC-·π·CE2·DE=π×12×2-π×12×1=,故选C. 4.(20xx·安微)一个四面体的三视图如图所示,则该四面体的表面积是( ) A.1+ C.1+2 答案 B 解析 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S表=2××2×1+2××()2=2+,故选B. 5.(20xx·广东东莞一中、松山湖学校联考)某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( ) A.π B.6π C.π D.π 答案 C B.2+3 D.22 12 / 16 【本资料精心搜集整理而来,欢迎广大同仁惠存!】
相关推荐: