21. (2018?临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门? 22. (2018?邵阳)某商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯.如图所示,已知原阶梯式自动扶梯AB长为10m,坡角∠ABD为30°;改造后的斜坡式自动扶梯的坡角∠ACB为15°,请你计算改造后的斜坡式自动扶梯AC的长度,(结果精确到0.lm.温馨提示:sin15°≈0.26,cosl5°≈0.97,tan15°≈0.27) 23. (2018?泰州)日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H-H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度. 13 / 29
如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m. (1)求山坡EF的水平宽度FH;
(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?
24. (2018?达州)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)
14 / 29
2019年中考数学专题复习
第十九讲 解直角三角形参考答案
【备考真题过关】 一、选择题
1.【思路分析】根据锐角三角函数的定义求出即可. 【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3, ∴∠A的正切值为故选:A. 【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键. 2.【思路分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求. 【解答】解:连接BC, BC3 ??3 , AC1 由网格可得AB=BC=5,AC=10,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 【点评】此题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键. 3.【思路分析】直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案. 【解答】解:如图所示: 15 / 29
∵∠C=90°,tanA=1, 2∴设BC=x,则AC=2x,故AB=5 x, AC2x25则sinB= ? =. 5AB5x故答案为:25. 5【点评】此题主要考查了锐角三角函数关系,正确表示各边长是解题关键. 4.【思路分析】根据特殊角的三角函数值直接解答即可. 【解答】解:cos30°=故选:B. 【点评】此题考查了特殊角的三角函数值,是需要识记的内容. 5.【思路分析】根据正切函数可求小河宽PA的长度. 【解答】解:∵PA⊥PB,PC=100米,∠PCA=35°, ∴小河宽PA=PCtan∠PCA=100tan35°米. 故选:C. 【点评】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案. 6.【思路分析】在两个直角三角形中,分别求出AB、AD即可解决问题. 3. 216 / 29
相关推荐: