∵MF?NF,故M,N分别在x轴两侧,yE??yD, ∴
yEyD,∴E,O,D三点共线. ?xExD
21.解:(Ⅰ)函数f(x)的定义域为(0,??).
ax2?x?a由题意f'(x)?x?1??,x?0,??1?4a.
xx①若??1?4a?0,即a?数;
②若??1?4a?0,即a?12,则x?x?a?0恒成立,则f(x)在(0,??)上为单调减函411?1?4a2,方程x?x?a?0的两个根为x1?,42x2?11?1?4a)时,f'(x)?0,所以函数f(x)单调递减,,当x?(,x2当x?(x2,??)22时,f'(x)?0,所以函数f(x)单调递增,不符合题意.
综上,若函数f(x)为定义域上的单调函数,则实数a的取值范围为a?1. 4(Ⅱ)因为函数f(x)有两个极值点,所以f'(x)?0在x?0上有两个不等的实根,
2即x?x?a?0有两个不等的实根x1,x2,
可得a??x1?x2?1,1,且?, 4?x1?x2?a2921,可得x1?(0,). 93因为a?(0,),则0?x1(1?x1)?121212x1?x1?alnx1x1?x1?x1x2lnx1x1?x1f(x1)2??2?2?x1lnx1, x2x2x21?x11x1?(0,).
31212x?xx?x令g(x)?2,m(x)?xlnx, ?xlnx,h(x)?21?x1?x∵h'(x)??11??0,
2(x?1)221e又m'(x)?1?lnx,x?(0,)时,m'(x)?0,
111?,故m'(x)?0在x?(0,)上恒成立, 3e31所以g'(x)?h(x)?m(x)?0在x?(0,)上恒成立,
312x?x1即g(x)?2?xlnx在x?(0,)上单调递减,
31?x151?ln3,得证. 所以g(x)?g()??3123而
?x?2cos?x2?y2?1,?22.解:(Ⅰ)(?为参数). 4?y?sin?(Ⅱ)设四边形ABCD的周长为l,设点A(2cosq,sinq),
l?8cos??4sin??45(21cos??sin?)?45sin(???), 55且cos??12,sin??, 55所以,当????2k??此时??2k???2(k?Z)时,l取最大值,
?2??,
所以,2cos??2sin??41,sin??cos??, 55此时,A(411,),l1的普通方程为y?x.
455??3x?a?4,x?a,?23.解:(Ⅰ)当a??2时,函数f(x)?|2x?4|?|x?a|???x?a?4,a?x??2,
?3x?a?4,x??2.?可知,当x??2时,f(x)的最小值为f(?2)??a?2?1,解得a??3. (Ⅱ)因为f(x)?|2x?4|?|x?a|?|(2x?4)?(x?a)|?|x?a?4|, 当且仅当(2x?4)(x?a)?0时,f(x)?|x?a?4|成立, 所以,当a??2时,x的取值范围是?x|a?x??2?; 当a??2时,x的取值范围是??2?;
当a??2时,x的取值范围是?x|?2?x?a?.
相关推荐: