优质文档
(反证法):假设图象上存在两点A(x1,y1)B(x2,y2)使得过此两点处切线互相垂直,则由f?(x)?x2?1知两点处的切线斜率分别为k1?x12?1
2(x12?1)(x2?1)??1①
2k2?x2?1且
2?1?0 ?x1,x2?[?1,1] ?x12?1?0,x22?(x12?1)(x2?1)?0这与①式矛盾
故假设不成立..............................12分
a2?lnx,其定义域为?0, ???, 22. 解:(1)解法1:∵h?x??2x?xa21∴h??x??2?2?.
xx2∵x?1是函数h?x?的极值点,∴h??1??0,即3?a?0.
∵a?0,∴a?3.
经检验当a?3时,x?1是函数h?x?的极值点,
3.
∴a?a2?lnx,其定义域为?0,???, 解法2:∵h?x??2x?xa21∴h??x??2?2?.
xxa2122令h??x??0,即2?2??0,整理,得2x?x?a?0.
xx2∵??1?8a?0,
优质文档
优质文档
?1?1?8a2?1?1?8a2∴h??x??0的两个实根x1?(舍去),x2?,
44当x变化时,h?x?,h??x?的变化情况如下表:
?0,x2?x ?x2,???x2 h??x?— 0 + h?x? 极小值 ?1?1?8a2?1,即a2?3, 依题意,4∵a?0,∴a?3. ...........5分
,e?都有f?x1?≥g?x2?成立等价于对任意的x1,x2??1,e?都(2)解:对任意的x1,x2??1有??f?x???min≥??g?x???max.
当x?[1,e]时,g??x??1?1?0. x,e?上是增函数. ∴函数g?x??x?lnx在?1∴??g?x???max?g?e??e?1.
a2?x?a??x?a?∵f??x??1?2?,且x??1,e?,a?0.........8分
xx2①当0?a?1且x?[1,e]时,f??x??优质文档
?x?a??x?a??0x2,
优质文档
a2∴函数f?x??x?在[1,e]上是增函数,
x∴??f?x???min?f?1??1?a. 22由1?a≥e?1,得a≥e,
又0?a?1,∴a不合题意.
②当1≤a≤e时,
若1≤x<a,则f??x???x?a??x?a??0x2,
若a<x≤e,则f??x???x?a??x?a??0x2.
a2∴函数f?x??x?在?1,a?上是减函数,在?a,e?上是增函数.
x∴??f?x???min?f?a??2a. 由2a≥e?1,得a≥e?1, 2又1≤a≤e,∴e?1≤a≤e. 2③当a?e且x?[1,e]时,f??x???x?a??x?a??0x2,
a2,e?上是减函数. ∴函数f?x??x?在?1x优质文档
∴??f?x???f?e??e?a2min?e. 由e?a2e≥e?1,得a≥e,
又a?e,∴a?e................11分
综上所述,a的取值范围为??e?1?2,?????.
优质文档
优质文档
分
............12
相关推荐: