(物理)物理带电粒子在无边界匀强磁场中运动题20套(带答案)含解析
一、带电粒子在无边界匀强磁场中运动1专项训练
1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点
?3?P?L,0??3?处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电??粒子.不考虑粒子的重力.
(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;
(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;
(3)若在xOy平面内加沿y轴正向的匀强电场Eo,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.
某同学查阅资料后,得到一种处理相关问题的思路:
带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)【解析】 【详解】
2BLq221BLq(2)(3)3m9m?E0???E
??vB?B?2032v12(1)粒子1在一、二、三做匀速圆周运动,则qv1B?m
r1?3?22由几何憨可知:r1??L?r1????3L??
??2得到:v1?2BLq 3m(2)粒子2在第一象限中类斜劈运动,有:
1qE23h?t ,L?v1t2m38qLB2在第二、三象限中原圆周运动,由几何关系:L?h?2r1,得到E?
9m22又v2?v1?2Eh,得到:v2?221BLq 9m(3)如图所示,将v3分解成水平向右和v?和斜向的v??,则qv?B?qE0,即v??而v???2 v'2?v3E0 B所以,运动过程中粒子的最小速率为v?v???v?
E?E?2即:v??0??v3?0
B?B?2
2.如图所示,在x轴上方有一匀强磁场,磁感应强度为B。x轴下方有一匀强电场,电场强度为E。屏MN与y轴平行且相距L,一质量为m,电荷量为e的电子,在y轴上某点A自静止释放,如果要使电子垂直打在屏MN上,那么: (1)电子释放位置与原点O点之间的距离s需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?
【答案】(1)s?【解析】 【分析】 【详解】
eL2B22Em?2n?1?2 (n=0,1,2,3…);(2)t?BL?m??2n?1? (n=0,1,2,3…) E2eB(1)在电场中电子从A→O过程,由动能定理可得
eEs?12mv0 2在磁场中电子偏转,洛伦兹力提供向心力,有
2v0qv0B?m
r可得
r?根据题意有
mv0 qB(2n+1)r=L
所以解得
s?eL2B22Em?2n?1?2 (n=0,1,2,3…)
(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即
t=(2n+1)由公式 eE?ma可得
2sTT??n? a42eE ma?22?rv0由公式 qvB?m 和 T?可得
vr0T?综上整理可得
2?m eBt?BL?m??2n?1? (n=0,1,2,3…) E2eB
3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为
L(??o),内圆弧面CD的电势为?,足够长的收集板MN平行边界ACDB,ACDB与2MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回.
相关推荐: