第一范文网 - 专业文章范例文档资料分享平台

工程热力学和传热学课后答案解析(前五章)

来源:用户分享 时间:2025/6/28 19:03:43 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

设空气比热为定值,问:1)此压缩过程是否可逆?为什么?2)压缩1kg空气所消耗的轴功是多少?

2) 若可逆,W=Cv*(240-25)

7.气体在气缸中被压缩,压缩功为186kJ/kg,气体的热力学能变化为56kJ/kg,熵变化为-0.293kJ/(kg·K)。温度为20?C的环境可与气体发生热交换,试确定每压缩1kg气体时的熵产。 SF=-(186-56)/(273+20)= S2-S1=SF+SG

8.设一可逆卡诺热机工作于1600K和300K的两个热源之间,工质从高温热源吸热400kJ,试求:(1)循环热效率;(2)工质对外作的净功;(3)工质向低温热源放出的热量。 (1) 1-300/1600=13/16 (2) 400*13/16=325 (3) 400-325=75

9.已知A、B、C3个热源的温度分别为500K,400K和300K,有可逆机在这3个热源间工作。若可逆机从热源A吸入3000kJ热量,输出净功400kJ,试求可逆机与B,C两热源的换热量,并指明方向。 3000/500+QB/400+QC/300=0 3000+QB+QC=400 QB=-3200 QC=600

10.试论证如违反热力学第二定律的克劳修斯说法,则必然违反开尔文说法以及违反开尔文说法必然导致违反克劳修斯说法。

11.有A,B两物体,其初温TA>TB,两物体的质量相等mA=mB=m,其比热容亦相等cA=cB=c,且为常数。可逆热机在其间工作,从A吸热,向B放热,直至两物体温度相等时为止。 (1)试证明平衡时的温度为Tm?TA?TB;(2)求可逆热机对外输出的净功。

SA-SM=lnTA/TM SM-SB=lnTM/TB SA-SM= SM-SB

12.如图3-1所示,用热机E带动热泵P工作,热机在热源T1和冷源T0之间工作,而热泵则在冷源T0和另一热源T1’之间工作。已知T1=1000K、T1’=310K、T0=250K。如果热机从热源T1吸收热量Q1=1kJ,而热泵向另一热源T1’放出的热量QH供冬天室内取暖用。

(1)如热机的热效率为?t=0.50,热泵的供热系数?h=4,求QH; (2)如热机和热泵均按可逆循环工作,求QH;

(3)如上述两次计算结果均为QH>Q1,表示冷源T0中有一部分热量传入了温度T1’的热源,而又不消耗(除热机E所提供的功之外的)其他机械功,这是否违反热力学第二定律的克劳修斯说法? (1) W= Q1*?t =1*0.5=0.5kJ QH=W*?h=4=0.5*4=2kJ

(2) W=1*(1-250/1000)=0.75kT QH=0.75*(310/(310-250))=3.875kJ (3) 不违反,T1>T1’

图3-1

第四章 理想气体的热力性质与过程

一.基本概念

理想气体: 比热容:

二.习题

21.热力学第一定律的数学表达式可写成q??u?w 或 q?cv?t??pdv 两者有何不同?

1q=Δu+w 热力学第一定律的数学表达,普适的表达式

q=Cv*ΔT+∫pdv内能等于定容比热乘以温度变化,适用于理想气体;体积功等于压力对比容的积分,适用于准静态过程。所以该式适用于理想气体的准静态过程

2.图4-1所示,1-2和4-3各为定容过程,1-4和2-3各为定压过程,试判断q143与q123哪个大?

P 2 3 q123=(u3-u1)+w123 q143=(u3-u1)+w143 w123>w143

1 4 所以

v

图4-1

3.有两个任意过程1-2和1-3,点2和点3在同一条绝热线上,如图4-2所示。试问△u12与△u13谁大谁小?又如2和3在同一条等温线上呢? P 2->3为绝热膨胀过程,内能下降。所以

2 u2>u3。

绝热线

1 3

v 图4-2 4.讨论1

Cp/Cv=k q=Cp(T2-T1)

6.某理想气体在气缸内进行可逆绝热膨胀,当容积为二倍时,温度由40℃下降到-40℃,过程中气体做了60kJ/kg的功。若比热为定值,试求cp与cv的值。 q=Δu+w

0=Cv(-40-40)+60

p1*vk= p1*(2v)k p1*v=R(273+40) p2*2v=R(273-40)

w=R*T1/(k-1)*(1-T2/T1)

Cp=Cv+R

7.某理想气体初温T1=470K,质量为2.5kg,经可逆定容过程,其热力学能变化为?U=295.4kJ,求过程功、过程热量以及熵的变化。设该气体R=0.4kJ/(kg·K),k=1.35,并假定比热容为定值。 Cp-Cv=R Cp/Cv=k

W=0, Q=?U, ?T=?U/(2.5kg*Cv), ?S=

8.在一具有可移动活塞的封闭气缸中,储有温度t1=45?C,表压力pg1=10kPa的氧气0.3m3。在定压下对氧气加热,加热量为40kJ;再经过多变过程膨胀到初温45?C,压力为18kPa。设环境大气压力为0.1MPa,氧气的比热容为定值,试求:(1)两过程的焓变量及所作的功;(2)多变膨胀过程中气体与外界交换的热量。 (1)过程1为定压过程,焓变于加热量40kJ;过程2的终了状态和过程1的初始状态比较,温度相同,理想气体的焓为温度的函数,所以过程2的焓变为-40kJ。

9.1kg空气,初态p1=1.0MPa, t1=500?C,在气缸中可逆定容放热到p2=0.5MPa,然后可逆绝热压缩到t3=500?C,再经可逆定温过程回到初态。求各过程的?u,?h,?s及w和q各为多少?并在p-v图和T-s图上画出这3个过程。

10.一封闭的气缸如图4-3所示,有一无摩擦的绝热活塞位于中间,两边分别充以氮气和氧气,初态均为p1=2MPa,t1=27?C。若气缸总容积为1000cm3,活塞体积忽略不计,缸壁是绝热的,仅在氧气一端面上可以交换热量。现向氧气加热使其压力升高到4MPa,试求所需热量及终态温度,并将过程表示在p-v图及T-s图上。绝热系数k=1.4

图4-3 V1=0.0005m3

4*106*VO2/TO2=2*106*0.0005/(273+27) 4*106*VN2/TN2=2*106*0.0005/(273+27) VO2+ VN2=0.001

2*106*0.0005k=4*106*VN2k

?1=120kg/h;另一股的11.如图4-4所示,两股压力相同的空气流,一股的温度为t1=400℃,流量m?2=210kg/h;温度为t2=150℃,流量m在与外界绝热的条件下,它们相互混合形成压力相同的空气流。

已知比热为定值,试计算混合气流的温度,并计算混合过程前后空气的熵的变化量是增加、减小或

不变?为什么?

(400+273)*120+(150+273)*210=(120+210)*T T=

熵增过程

图4-4

ΔS=Q(1/423-1/673)

12.如图4-5所示,理想气体进行了一可逆循环1-2-3-1,已知1-3为定压过程,v3=2v1;2-3为定容过程,p2=2p3;1-2为直线线段,即p/v=常数。(1)试论证q1?2?q1?3?q3?2;(2)画出该循环的T-s图,并证明?s1?2??s1?3??s3?2;(3)若该理想气体的cp=1.013kJ/(kg·K),cv=0.724kJ/(kg·K),试求该循环的热效率。

(1)一个循环,内能不变,输出正功,总的吸热量为正; (3)

T2=2*T3=4*T1

Q12=Cv(T2-T1)+(p1+p2)*(V3-V1)/2= Cv(T2-T1)+Cp(T3-T1)/2+Cp(T3-T1’) =Cv*3T1+Cp*T1/2+Cp*(2T1)/2

(T1’为压力p2以及容积v1在p-v图对应的温度) 图4-5 Q23=-Cv(T2-T3)=-Cv*2T1 Q31=-Cp(T3-T1)=-Cp*T1 W=Q12-Q23-Q3 效率=W/Q12

13.1kmol理想气体从初态p1=500kPa,T1=340K绝热膨胀到原来体积的2倍。设气体Mcp=33.44kJ/(kmol·K),Mcv=25.12kJ/(kmol·K)。试确定在下述情况下气体的终温,对外所做的功及熵的变化量。(1)可逆绝热过程;(2)气体向真空进行自由膨胀。 (1) k=

p1*V*T1=p2*2v*T2 p1*Vk=p2*(2V)k T2=

W=∫pdv= ds=0

(2) T2=T1 W=0

ds=设计可逆定温过程

工程热力学和传热学课后答案解析(前五章).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8lmpi3q29q5nrap1rg1l036aw5tvxo00xpx_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top