∴∠BDE=∠ABD+∠A′DE=×180°=90°, 在Rt△BCD中,BD=BC÷cos30°=4÷在Rt△ADE中,DE=BD?tan30°=
=×
cm,
=cm.故选A.
点评: 本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键. 13.(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( ) A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C. (x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15
分析:根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可. 解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选A.
点评:此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键. 14.(2014年山东泰安)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
ABC.
分析:分点Q在AC上和BC上两种情况进行讨论即可. 解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=∴y=×AP×PQ=×x×
=
x;
2
D
当点Q在BC上时,如图所示: ∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°, ∴PQ=BP?tan60°=(16﹣x). ∴
=
=
.
∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.
故选:B.
点评:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.
15.(2014年山东泰安)若不等式组
有解,则实数a的取值范围是( )
A.a<﹣36 B. a≤﹣36 C. a>﹣36 D. a≥﹣36 分析: 先求出不等式组中每一个不等式的解集,不等式组有解,即两个不等式的解集有公共部分,据此即可列不等式求得a的范围. 解:
,解①得:x<a﹣1,解②得:x≥﹣37,
则a﹣1>﹣37,解得:a>﹣36.故选C.
点评: 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间. 16.(2014年山东泰安)将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为( )
A.10° B. 20° C. 7.5° D. 15° 分析: 根据直角三角形两锐角互余求出∠DCE=60°,旋转的性质可得∠BCE1=15°,然后求出∠BCD1=45°,从而得到∠BCD1=∠A,利用“边角边”证明△ABC和△D1CB全等,根据全等三角形对应角相等可得∠BD1C=∠ABC=45°,再根据∠E1D1B=∠BD1C﹣∠CD1E1计算即可得解. 解:∵∠CED=90°,∠D=30°,∴∠DCE=60°, ∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°, ∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,
在△ABC和△D1CB中,,∴△ABC≌△D1CB(SAS),
∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选D.
点评:本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记性质并求出△ABC和△D1CB全等是解题的关键. 17.(2014年山东泰安)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=
的图象可能是( )
A.B CD.
分析: 根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.
解:由图可知,m<﹣1,n=1,所以,m+n<0,
所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1), 反比例函数y=
的图象位于第二四象限,
纵观各选项,只有C选项图形符合.故选C.
点评:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键. 18.(2014年山东泰安)如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论: (1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°. 其中正确的个数为( )
A. 4个 B. 3个 C. 2个 D. 1个 分析: (1)利用切线的性质得出∠PCO=90°,进而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可; (2)利用(1)所求得出:∠CPB=∠BPD,进而求出△CPB≌△DPB(SAS),即可得出答案; (3)利用全等三角形的判定得出△PCO≌△BCA(ASA),进而得出CO=PO=AB; (4)利用四边形PCBD是菱形,∠CPO=30°,则DP=DB,则∠DPB=∠DBP=30°,求出即可. 解:(1)连接CO,DO, ∵PC与⊙O相切,切点为C,∴∠PCO=90°,
在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,
∴PD与⊙O相切,故此选项正确; (2)由(1)得:∠CPB=∠BPD, 在△CPB和△DPB中,
,∴△CPB≌△DPB(SAS),
∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确; (3)连接AC, ∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°, 在△PCO和△BCA中,
,∴△PCO≌△BCA(ASA),
∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°, ∴CO=PO=AB,∴PO=AB,故此选项正确;
(4)∵四边形PCBD是菱形,∠CPO=30°, ∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A. 点评:此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键. 19.(2014年山东泰安)如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为( )
A.(
﹣1)cm B. (
2
+1)cm
2
C. 1cm
2
D. cm
2
分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论. 解:∵扇形OAB的圆心角为90°,假设扇形半径为2,∴扇形面积为:半圆面积为:×π×1=
2
2
=π(cm),
(cm),∴SQ+SM =SM+SP=
2
(cm),
2
∴SQ=SP,连接AB,OD,
∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm), ∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣
﹣1=
﹣1(cm).故选:A.
22
相关推荐: