全国名校高考试题分类汇编(经典 系统 附详解)
(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48.
(3)该家庭未使用节水龙头50天日用水量的平均数为
1
x1=50×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.
1
该家庭使用了节水龙头后50天日用水量的平均数为x2=50×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.
估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).
2. [优质真题?北京卷,17] 某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:
(1)从总体的400名学生中随机抽取一人,估计其分数小于70的
全国名校高考试题分类汇编(经典 系统 附详解)
概率;
(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;
(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.
解 (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,
所以样本中分数小于70的频率为1-0.6=0.4,
所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.
(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,
分数在区间[40,50)内的人数为100-100×0.9-5=5, 5
所以总体中分数在区间[40,50)内的人数估计为400×100=20. (3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,
1
所以样本中分数不小于70的男生人数为60×2=30, 所以样本中的男生人数为30×2=60, 女生人数为100-60=40,
所以样本中男生和女生人数的比例为60∶40=3∶2,
所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶
全国名校高考试题分类汇编(经典 系统 附详解)
2.
3. [优质真题?全国Ⅰ,19] 某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.
(1)若n=19,求y与x的函数解析式;
(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
解 (1)当x≤19时,y=3800;
当x>19时,y=3800+500(x-19)=500x-5700. 所以y与x的函数解析式为
?3800,x≤19,y=?
?500x-5700,x>19
(x∈N).
(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.
(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800元,20台的费用为4300
全国名校高考试题分类汇编(经典 系统 附详解)
元,10台的费用为4800元,因此这100台机器在购买易损零件上所需费用的平均数为
1
100×(3800×70+4300×20+4800×10)=4000(元).
若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4000元,10台的费用为4500元,因此这100台机器在购买易损零件上所需费用的平均数为
1
100×(4000×90+4500×10)=4050(元).
比较两个平均数可知,购买1台机器的同时应购买19个易损零件.
4. [优质真题?全国Ⅱ,18] 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
上年度 出 0 1 2 3 4 险次数 ≥5 保费 0.85a a 1.25a 1.5a 1.75a 2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次0 1 2 3 4 ≥5 数 60 50 30 30 20 10 频数
(1)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
解 (1)事件A发生当且仅当一年内出险次数小于2. 由所给数据知,一年内出险次数小于2的频率为
相关推荐: