??3x?15得: f(x)??2?2(x?7)?5(4?x?6)(6?x?9)
3.解:(1)f(x)?5x (15?x?40)
?90 g(x)???90?2(x?30)(15?x?30)(30?x?40)
(2)当15?x?30时,由f(x)?g(x),得5x?90,∴15?x?18,
当30?x?40时,f(x)?g(x)?3x?30?c恒成立,
∴当15?x?18时,f(x)?g(x), 当18?x?40时,f(x)?g(x),
故当小张活动时间x?[15,18]时选择甲家俱乐部合算;当x?(18,40]时,选择乙家俱乐部合算.
4.解:(1)若a,b,c?R?,则
(2)f(x)?ax?a22a?b?c32?123abc(当且仅当a?b?c时取等号)
212x?x(a?23x)?0在(0,2)上恒成立,即
?12x,x?(0,2),∴a2?2即a?2
又∵
f(x)?x(a?22212x)(a?221x)?{[x?(a?x)?(a?x)]}?()
23223632696221221221232a23 ∴x?a?2213x 即x?2a时,(f(x))max?a?1?a?3
∵x?63a?(0,2),∴a?(0,6),
综上可知:a?(2,6),
第 5 页 共 9 页
∵f(x)为奇函数,∴x?63a时,f(x)有最小值.
故猜测x?(?2,?
63a]和[63a,2)时,f(x)递减;x?(?63a,63 a)时,f(x)递增.
(3)依题意,g(x)只须以4为周期即可,设x?(4k?2,4k?2),(k?N),
4k?2?(?2,2),此时g(x)?g(x?4k)?f(x?4k)
2 即g(x)?a(x?4k)?
12(x?4k),x?(4k?2,4k?2) k?N
25.解:(1)∵f(?1)?0,∴b?a?1,由f(x)?0恒成立,知??(a?1)2?0,
∴a?1,从而f(x)?x2?2x?1,
2??(x?1) ∴F(x)??2???(x?1)(x?0)(x?0)
2?k2
(2)g(x)?x2?(2?k)x?1,∴?
∴k??2或k?6
2?k2??2或??2
(3)∵f(x)为偶函数,∴f(x)?ax?1,故必有:f(x)在(0,??)上递
2增.(a?0)
∵m??n?0 ∴f(m)?f(?n),即F(m)??F(n),∴
F(m)?F(n)?0
6.解:(1)令x1?x2?0,由①得f(0)?0,由③得f(0)?f(0)?f(0),∴f(0)?0
∴f(0)?0.
(2)①②易证,若x1?0,x2?0,x1?x2?1,
第 6 页 共 9 页
g(x1?x2)?g(x1)?g(x2)???(2x2?1)(2x1故g(x)适合①②③. ?1)?0,
(3)由③知:任给m,n?[0,1],m?n时,n?m?[0,1],
f(n)?f(n?m?m)?f(n?m)?f(m)?f(m),
若x0?f(x0),则f(x0)?f[f(x0)]?x0矛盾; 若x0?f(x0),则f(x0)?f[f(x0)]?x0矛盾; 故x0?f(x0).
7.解:(1)由f(x)?x 得x?0,x?2,∴有两个滞点0和2.
1an2
(2)4Sn?()?2(11an?1)2?0,∴2Sn?an?an ①
2 2Sn?1?an?1?an?1 ②
22②-①有:2an?1?an?1?an?1?an?an,
∴(an?1?an)(an?1?an?1)?0,
∵an?0,∴an?1?an??1,即{an}是等差数列,且d??1,
2当n?1时,有2S1?a1?a1,∴a1??1,∴an??n.
8.解:(1)依题意f(x)为奇函数,∴b?0,d?0,∴f'(x)?ax
∵f'(1)??6,f'(2)?0,
?a?c??6 ∴?, ∴a?2,c??8,b?d?0.
4a?c?0?232?c
(2)f(x)?x?8x,由f'(x)?2x?8?0,(?1?x?1),
第 7 页 共 9 页
32 9
即f(x)递减,x?[?1,1]
∴当x?[?1,1]时,(f(x))max?f(?1),(f(x))min?f(1), ∴|f(x1)?f(x2)|?f(?1)?f(1)?443,(?1?x1,x2?1).
)1.1x解1x)'?1x:?12x?(12xx1??x?0,
f'(x)??(x)'?(2xx2(x?1)?0
∴f(x)在x?0时单调递减.
a?1a1?11 (2)由(1)知:f(a)?f(1),即:lna??ln1?,
即:lna?a?1a?0,∴lna?a?1a,
而a?1,∴
lnaa?1?1a.
10.解:(1)令x?1, y?0,有f(0)?1.
1f(?x) (2)令y??x?0,则1?f(x?x)?f(x)?f(x),∴f(x)?,
∵0?f(?x)?1,∴f(x)?1.
(3)设x1?x2,则x2?x1?0,于是0?f(x2?x1)?1,
∴f(x2)?f(x1)?f[(x2?x1)?x1]?f(x1)
?f(x2?x1)?f(x1)?f(x1)
?f(x1)[f(x2?x1)?1]?0
第 8 页 共 9 页
相关推荐: