当x?1时,m?fmin(x)?1 2解法三:(1)f(x)?x?111?1??1?1?x??x???x????x???x? 222?2??2?2?1?x?1?1 2??1??1?x?x?????0?1??22????当且仅当?即x?时,等号成立.
21?x??0?2?当x?1时m?fmin(x)?1 2解法一:(2)由题意可知,ab?bc?ca?111??, cab9,
a?b?c因为a?0,b?0,c?0,所以要证明不等式ab?bc?ca?只需证明??111????(a?b?c)?9, cab??因为?13?111????(a?b?c)?333abc?9成立,
abc?cab?所以原不等式成立.
解法二:(2)因为a?0,b?0,c?0,所以ab?bc?ca?33a2b2c2?0,
a?b?c?33abc?0,
又因为abc?1,
所以(a?b?c)(ab?bc?ac)?33abc?33a2b2c2?9,
(ab?bc?ac)(a?b?c)?9
所以ab?bc?ca?9,原不等式得证.
a?b?c111??, cab9,
a?b?c补充:解法三:(2)由题意可知,ab?bc?ca?因为a?0,b?0,c?0,所以要证明不等式ab?bc?ca?只需证明??111????(a?b?c)?9, abc??2111???111?由柯西不等式得:????(a?b?c)??a??b??c???9成立,
abcabc????所以原不等式成立.
【点睛】本题主要考查了绝对值函数的最值求解,不等式的证明,绝对值三角不等式,基本不等式及柯西不等式的应用,考查了学生的逻辑推理和运算求解能力.
相关推荐: