【考点】反比例函数图象上点的坐标特征;待定系数法求一次函数解析式;三角形三边关系. 【专题】计算题.
【分析】先根据反比例函数图象上点的坐标特征确定A点坐标为(1,1),B点坐标为(2,),再利用待定系数法确定直线AB的解析式为y=﹣x+,然后根据三角形三边的关系得到|PA﹣PB|≤AB,当点P为直线AB与x轴的交点时,取等号,则线段AP与线段BP之差达到最大,然后确定直线y=﹣x+与x轴的交点坐标即可. 【解答】解:把A(1,y1),B(2,y2)代入y=得y1=1,y2=,则A点坐标为(1,1),B点坐标为(2,), 设直线AB的解析式为y=kx+b,
把A(1,1),B(2,)代入得,解得,
所以直线AB的解析式为y=﹣x+,
因为|PA﹣PB|≤AB,
所以当点P为直线AB与x轴的交点时,线段AP与线段BP之差达到最大, 把y=0代入y=﹣x+得﹣x+=0,解得x=3, 所以P点坐标为(3,0). 故答案为(3,0).
【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k. 19.(2015?泰兴市二模)如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是 4 .
【考点】垂径定理;三角形中位线定理.
【分析】当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可. 【解答】解:法①:如图:当CD∥AB时,PM长最大,连接OM,OC,
第21页(共29页)
∵CD∥AB,CP⊥CD, ∴CP⊥AB,
∵M为CD中点,OM过O, ∴OM⊥CD,
∴∠OMC=∠PCD=∠CPO=90°, ∴四边形CPOM是矩形, ∴PM=OC,
∵⊙O直径AB=8, ∴半径OC=4, 即PM=4, 故答案为:4.
法②:连接CO,MO,根据∠CPO=∠CM0=90°,所以C,M,O,P,四点共圆,且CO为直径.连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.即PMmax=4
【点评】本题考查了矩形的判定和性质,垂径定理,平行线的性质的应用,关键是找出符合条件的CD的位置,题目比较好,但是有一定的难度.
三.解答题(共5小题) 20.(2013?武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b. (1)求证:AE=b+a; (2)求a+b的最大值;
22
(3)若m是关于x的方程:x+ax=b+ab的一个根,求m的取值范围.
【考点】圆的综合题. 【分析】(1)首先连接BE,由△OAB为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E的度数,又由AB为⊙D的直径,可求得CE的长,继而求得AE=b+a;
(2)首先过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,可得(a+b) 222
=a+b+2ab=1+2ab=1+2CH?AB=1+2CH≤1+2AD=1+AB=2,即可求得答案;
22
(3)由x+ax=b+ab,可得(x﹣b)(x+b+a)=0,则可求得x的值,继而可求得m的取值范围. 【解答】解:(1)连接BE,
第22页(共29页)
∵△OAB为等边三角形, ∴∠AOB=60°, ∴∠AEB=30°, ∵AB为直径,
∴∠ACB=∠BCE=90°, ∵BC=a,
∴BE=2a,CE=a, ∵AC=b,
∴AE=b+a;
(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1, ∴a+b=1,
∵S△ABC=AC?BC=AB?CH,
∴AC?BC=AB?CH,
222
∴(a+b) =a+b+2ab=1+2ab=1+2CH?AB=1+2CH≤1+2AD=1+AB=2, ∴a+b≤,
故a+b的最大值为,
(3)∵x+ax=b+ab, 22
∴x﹣b+ax﹣ab=0, ∴(x+b)(x﹣b)+a(x﹣b)=0, ∴(x﹣b)(x+b+a)=0, ∴x=b或x=﹣(b+a),
当m=b时,m=b=AC<AB=1, ∴0<m<1,
当m=﹣(b+a)时,由(1)知AE=﹣m, 又∵AB<AE≤2AO=2, ∴1<﹣m≤2, ∴﹣2≤m<﹣1,
∴m的取值范围为0<m<1或﹣2≤m<﹣1.
2
2
2
2
【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用. 21.(2014春?泰兴市校级期中)如图,E、F是正方形ABCD的边AD上的两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于H.已知正方形ABCD的边长为4cm,解决下列问题:
第23页(共29页)
(1)求证:BE⊥AG;
(2)求线段DH的长度的最小值.
【考点】正方形的性质;全等三角形的判定与性质. 【分析】(1)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“边角边”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,再根据垂直的定义证明即可;
(2)根据直角三角形斜边上的中线等于斜边的一半,取AB的中点O,连接OH、OD,然后求出OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小. 【解答】(1)证明:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG, 在△ABE和△DCF中,
,
∴△ABE≌△DCF(SAS), ∴∠1=∠2,
在△ADG和△CDG中,
,
∴△ADG≌△CDG(SAS), ∴∠2=∠3, ∴∠1=∠3,
∵∠BAH+∠3=∠BAD=90°, ∴∠1+∠BAH=90°,
∴∠AHB=180°﹣90°=90°, ∴BE⊥AG;
(2)解:如图,取AB的中点O,连接OH、OD, 则OH=AO=AB=2, 在Rt△AOD中,OD=
=
=2
,
根据三角形的三边关系,OH+DH>OD,
∴当O、D、H三点共线时,DH的长度最小, DH的最小值=OD﹣OH=2﹣2.
第24页(共29页)
相关推荐: