第一范文网 - 专业文章范例文档资料分享平台

高数2期中练习题1

来源:用户分享 时间:2025/7/7 23:08:03 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2.二重积分(A)

2xydxdy,D:0?y?x,0?x?1的值为( ) ??D1111 (B) (C) (D) 62124223.设?是由曲面z?x?y与平面z?4所围成的闭区域,则三重积分(A)

????zdv的值为( )

6464? (B)? (C) (D)8? 332224.设D:x?y?a,若

222(a?x?y)dxdy??,则a为( ) ??D(A)3313 (B)3 (C) 1 (D)3 4225. 若积分区域D由y?0,x?1,y?2x围成的闭区域,则6. 若积分区域D?(x,y)1?x?2,1?y?2,则7.计算I???xyd?= 。

D????x?y?3dxdy= 。

D??ln(1?xD22?y2)dxdy,其中D由圆周x2?y2?1及坐标轴所围成得第一象限内的闭区域。

8.若D满足:x?y?2x,计算I??2??Dx2?y2dxdy.

9.累次积分I?(A)10.

?20d??cos?0f(rcos?,rsin?)rdr,可以写为( )

11?y200?dy?02x1y?y202f(x,y)dx(B)?dy?f(x,y)dx(C)?dx?f(x,y)dy(D)?dx?00111x?x200f(x,y)dy

?20dx?e?ydy= .

2y?2x所围成的平面区域。 ,其中由直线及抛物线x?y?4,x?y?12(x?y)dxdyD??11. 计算I?D12.设?是由球面x?y?z?R与球面x?y?z?2Rz(R?0)所围成的闭区域,求三重积分13. 计算

2222,其中是由与所围成的区域。 (x?y?z)dvz?1?x?yz?x?y?????a2222222????z2dv。

14. 证明

??f(x?y)d???D0xf(x)dx,其中D:x?y?a,x?0,y?0,(a?0),f(x)为连续函数。

(参考答案:1-6:B C C D,1/2, 1/3, 7.提示:用极坐标变换,原式 ?由分部积分法可得???20d??ln(1?r)?rdr?012?4?01ln(1?r)dr?22?4?01ln(1?t)dt

?4(2ln2?1).

8. 提示:用极坐标变换,原式 ???2??2d??2cos?08cos3?32rdr???d?? 。

?2392?29. D,10.

1(1?e?4), 211. 提示:先求出各交点,将区域写成X-型区域,原式 ??82dx?2x4?x(x?y)dy??dx?81812?x?2x(x?y)dy?54311。 1512.提示:截面法写出?,具体见教材P183 Ex8(1),原式?59?R5。 480?R??R????(x,y,z)x2?y2?2Rz?z2,0?z????(x,y,z)x2?y2?R2?z2,?z?R?,

2??2??13. 提示:?关于xoz平面对称,被积函数关于y是奇函数,知

2????ydv?0,同理???xdv?0故

???42?d?d??cos???sin?d? (x?y?z)dv?xdv?ydv?zdv?zdv??????????????????1?????000 ?2???401?cos?sin?d? ?. 48a14.提示:将区域写成X-型区域,等式左边

??f(x?y)d???D0dx?a?x0f(x?y)dy ,

a?x对于所以

?a?x0f(x?y)dy,令x?y?t,则?aa?x000f(x?y)dy??f(t)dt

xa??Df(x?y)d???dx?f(x?y)dy??dx?f(t)dt,接着交换积分次序可得。)

0xaa

搜索更多关于: 高数2期中练习题1 的文档
高数2期中练习题1.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8o6oh8mpae7dd7c92woz_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top