C¡¢a2ÓëaÏàµÈ D¡¢a2ÓëaµÄ´óС²»ÄÜÈ·¶¨
16¡¢ÊýÖáÉÏ£¬Aµã±íʾ-1£¬ÏÖÔÚA¿ªÊ¼Òƶ¯£¬ÏÈÏò×óÒÆ¶¯3¸öµ¥Î»£¬ÔÙÏòÓÒÒÆ¶¯9¸öµ¥Î»£¬ÓÖÏò×óÒÆ¶¯5¸öµ¥Î»£¬Õâʱ£¬Aµã±íʾµÄÊýÊÇ£¨ £© A¡¢-1 B¡¢0 C¡¢1 D¡¢8
17¡¢Ïß¶ÎAB=4cm£¬ÑÓ³¤ABµ½C£¬Ê¹BC=ABÔÙÑÓ³¤BAµ½D£¬Ê¹AD=AB£¬ÔòÏß¶ÎCDµÄ³¤Îª£¨ £©
A¡¢12cm B¡¢10cm C¡¢8cm D¡¢4cm 18¡¢1?2µÄÏà·´ÊýÊÇ£¨ £©
2?1 C¡¢?1?2 A¡¢1?2 B¡¢ D¡¢?2?1
19¡¢·½³Ìx(x-1)(x-2)=xµÄ¸ùÊÇ£¨ £©
A¡¢x1=1, x2=2 B¡¢x1=0, x2=1, x3=2 C¡¢x1=
3?52, x2=
3?52 D¡¢x1=0£¬x2=
1)?4?0x3?53, x3=
3?52
20¡¢½â·½³Ì
3(x2?1x2)?5(x?ʱ£¬ÈôÉè
x?1?yx£¬ÔòÔ·½³Ì¿É»¯Îª£¨ £©
A¡¢3y2+5y-4=0 B¡¢3y2+5y-10=0 C¡¢3y2+5y-2=0 D¡¢3y2+5y+2=0
21¡¢·½³Ìx2+1=2|x|ÓУ¨ £©
A¡¢Á½¸öÏàµÈµÄʵÊý¸ù£»B¡¢Á½¸ö²»ÏàµÈµÄʵÊý¸ù£»C¡¢Èý¸ö²»ÏàµÈµÄʵÊý¸ù£»D¡¢Ã»ÓÐʵÊý¸ù
22¡¢Ò»´Îº¯Êýy=2(x-4)ÔÚyÖáÉϵĽؾàΪ£¨ £© A¡¢-4 B¡¢4 C¡¢-8 D¡¢8
?x?a?x??a 23¡¢½â¹ØÓÚxµÄ²»µÈʽ?£¬ÕýÈ·µÄ½áÂÛÊÇ£¨ £©
A¡¢ÎÞ½â B¡¢½âΪȫÌåʵÊý C¡¢µ±a>0ʱÎÞ½â D¡¢µ±a<0ʱÎÞ½â
y?2x 24¡¢·´±ÈÀýº¯Êý
23£¬µ±x¡Ü3ʱ£¬yµÄȡֵ·¶Î§ÊÇ£¨ £©
23A¡¢y¡Ü B¡¢y¡Ý
23 C¡¢y¡Ý»òy<0 D¡¢023
25¡¢0.4µÄËãÊõƽ·½¸ùÊÇ£¨ £© A¡¢0.2 B¡¢¡À0.2 C¡¢
105 D¡¢¡À
105
27¡¢ÈôÒ»Êý×éx1, x2, x3, ¡, xnµÄƽ¾ùÊýΪx£¬·½²îΪs2£¬ÔòÁíÒ»Êý×ékx1, kx2, kx3, ¡, kxnµÄƽ¾ùÊýÓë·½²î·Ö±ðÊÇ£¨ £©
A¡¢kx, k2s2 B¡¢x, s2 C¡¢kx, ks2 D¡¢k2x, ks2 28¡¢Èô¹ØÓÚxµÄ·½³Ì
x?1?2x?aÓн⣬Ôò
aµÄȡֵ·¶Î§ÊÇ£¨ £©
A¡¢a¡Ù1 B¡¢a¡Ù-1 C¡¢a¡Ù2 D¡¢a¡Ù¡À1
29¡¢ÏÂÁÐͼÐÎÖмÈÊÇÖÐÐĶԳÆÍ¼ÐΣ¬ÓÖÊÇÖá¶Ô³ÆÍ¼ÐεÄÊÇ£¨ £© A¡¢Ïß¶Î B¡¢ÕýÈý½ÇÐÎ C¡¢Æ½ÐÐËıßÐÎ D¡¢µÈÑüÌÝÐÎ 30¡¢ÒÑÖª
ac?bd£¬ÏÂÁи÷ʽÖв»³ÉÁ¢µÄÊÇ£¨ £©
ca?3c?db?3dac?3a?bd?2b A¡¢
a?ba?b?c?dc?d B¡¢ C¡¢ D¡¢ad=bc
31¡¢Ò»¸öÈý½ÇÐεÄÈý¸öÄڽDz»ÏàµÈ£¬ÔòËüµÄ×îС½Ç²»´óÓÚ£¨ £© A¡¢300 B¡¢450 C¡¢550 D¡¢600
32¡¢ÒÑÖªÈý½ÇÐÎÄÚµÄÒ»¸öµãµ½ËüµÄÈý±ß¾àÀëÏàµÈ£¬ÄÇôÕâ¸öµãÊÇ£¨ £© A¡¢Èý½ÇÐεÄÍâÐÄ B¡¢Èý½ÇÐεÄÖØÐÄ C¡¢Èý½ÇÐεÄÄÚÐÄ 33¡¢ÏÂÁÐÈý½ÇÐÎÖÐÊÇÖ±½ÇÈý½ÇÐεĸöÊýÓУ¨ £© ¢ÙÈý±ß³¤·Ö±ðΪ
3 D¡¢Èý½ÇÐεĴ¹ÐÄ
:1:2µÄÈý½ÇÐÎ ¢ÚÈý±ß³¤Ö®±ÈΪ1:2:3µÄÈý½ÇÐÎ ¢ÛÈý¸öÄڽǵÄ
¶ÈÊýÖ®±ÈΪ3:4:5µÄÈý½ÇÐÎ ¢ÜÒ»±ßÉϵÄÖÐÏßµÈÓڸñßÒ»°ëµÄÈý½ÇÐÎ A¡¢1¸ö B¡¢2¸ö C¡¢3¸ö D¡¢4¸ö 34¡¢Èçͼ£¬ÉèAB=1£¬S¡÷OAB=
34Ocm2£¬Ôò»¡AB³¤Îª£¨ £©
BA