第一范文网 - 专业文章范例文档资料分享平台

内蒙古赤峰二中2019届高三上学期第三次月考数学(理)试卷(含答案)

来源:用户分享 时间:2025/7/11 15:30:15 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

(2)当时,在上单调递减,在单调递增.

(Ⅱ)设,

,设,

则.

(1)若,

在故此时函数(2)若①当

, 时,

单调递减,无零点,

不合题意.

,由(1)知对任意

恒成立

故②当

,对任意时,

恒成立,

因此当当

时,,考察函数时

必有零点,记第一个零点为,

单调递增,必存在零点. ,

.

由①②可知,当(2)当

由于

在,故

又所以当

上必存在零点.设在

在的第一个零点为,则当时,

上为减函数, ,

时,.即

,从而,

,则

在上单调递减,故当时恒有

令增.因此

在单调递减,在,

单调递

注意到

令时,则有,

由零点存在定理可知函数在上有零点,符合题意.

综上可知,的取值范围是.

22.(1)由直线的方程为

,得,依题意,设

,化成直角坐标方程,得,则到直线的距离

,当

,即

时,

,即

,故点到直线的距离的最大值为

(2)因为曲线上的所有点均在直线的右下方,

(其中

)恒成立,

.

,,又

,解得

恒成立,即 ,故取值范围为

.

23.(1),(2)

.

,要使恒成立,则,解得.又

,即

,当且仅当

,即

取等号,故.

内蒙古赤峰二中2019届高三上学期第三次月考数学(理)试卷(含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8vyui7f5iv3z01x0bvw21wxgu8k84a00nhu_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top