2019年
解析:选CD 功是能量转化的量度,做功的过程就是能量转化的过程.力F做的功导致内能的增加、杆动能的增加和重力势能的增加,所以有W=Q+ΔEk+ΔEp,选项AB错误,C正确;克服重力做的功等于杆重力势能的增加量,即W1=ΔEp,克服安培力做的功等于电路产生的焦耳热,即W2=Q,选项D正确.
5.(2018·成都二诊)如图所示,水平面上固定着两根相距L且电阻不计的足够长的光滑金属导轨,导轨处于方向竖直向下、磁感应强度为B的匀强磁场中,铜棒a、b的长度均等于两导轨的间距、电阻均为R、质量均为m,铜棒平行地静止在导轨上且与导轨接触良好.现给铜棒a一个平行导轨向右的瞬时冲量I,关于此后的过程,下列说法正确的是( )
A.回路中的最大电流为mR B.铜棒b的最大加速度为2m2R C.铜棒b获得的最大速度为m D.回路中产生的总焦耳热为2m
解析:选B 给铜棒a一个平行导轨的瞬时冲量I,此时铜棒a的速度最大,产生的感应电动势最大,回路中电流最大,每个棒受到的安培力最大,其加速度最大,I=mv0,v0=,铜棒a电动势E=BLv0,回路电流I==,选项A错误;此时铜棒b受到安培力F=BIL,其加速度a==,选项B正确;此后铜棒a做变减速运动,铜棒b做变加速运动,当二者达到共同速度时,铜棒b速度最大,据动量守恒,mv0=2mv,铜棒b最大速度v=,选项C错误;回路中产生的焦耳热Q=mv-·2mv2=,选项D错误.
6.如图,足够长的光滑平行导轨水平放置,电阻不计,MN部分的宽度为2l,PQ部分的宽度为l,金属棒a和b的质量ma=2mb=2m,其电阻大小Ra=2Rb=2R,a和b分别在MN和PQ上,垂直导轨相距足够远,整个装置处于竖直向下的匀强磁场中,磁感强度为B,开始a棒向右速度为v0,b棒静止,两棒运动时始终保持平行且a总在MN上运动,b总在PQ上运动,求a、b最终的速度.
BLI
B2L2I
I
I2
2019年
解析:本题由于两导轨的宽度不等,a、b系统动量不守恒,可对a、b分别用动量定理,a、b运动产生感应电流,a、b在安培力的作用下,分别作减速和加速运动.回路中电动势E总=Ea-Eb=2Blva-Blvb,
随着va减小,vb增加,E总减小,安培力F=E总lB/(3R)也随之减小,故a棒的加速度a=Fa/(2m)减小,b棒的加速度a′=Fb/m也减小.
当E总=0,即2Blva=Blvb时,两者加速度为零,两棒均匀速运动,且有vb=2va①
对a、b分别用动量定理-at=2m(va-vb)②
F
bt=mvb③
而a=2b④
联立以上各式可得:va=,vb=. 答案: v0
相关推荐: