∵E为PC的中点,
∴DE平分?PDC,?PDE?60?,
∴在Rt?PDE中,DE?PD?cos60?1,????2分 过E作EH?CD于H,则DH?∵AF??
1,连结FH, 21,∴四边形AFHD是矩形, ??????4分 2∴CD?FH,又CD?EH,FH?EH?H,∴CD?平面EFH,
EF?EFH又平面,
C?D. ??????7分
∴
(Ⅱ)∵AD?PD?2,PA?22,∴A D?PD,又AD?DC,∴AD?平面PCD,又AD?平面ABCD,∴平面PCD?平面ABCD.
(Ⅱ)过D作DG?DC交PC于点G,则由平面PCD?平面ABCD知,DG?平面ABCD,
故DA,DC,DG两两垂直,以D为原点,以DA,DC,DG所在直线分别为x,y,z轴,
建立如图所示空间直角坐标系
O?xyz, ??????9分 则A(2,0,0),B(2,2,0),C(0,2,0),P(0,?1,3),又知E为PC的中点,
????1313E(0,,),设F(2,t,0),则DE?(0,,),
2222????DF?(2,t,0),
PzED来源学科网ZXXK]
????????DP?(0,?1,3),DA?(2,0,0).????8分
设平面DEF的法向量为n?(x1,y1,z1),
CByAx?????13?n?DE?0,z1?0,??y1?则?????∴?2 2??n?DF?0,?2x?ty?0,?11F取z1??2,可求得平面DEF的一个法向量n?(?3t,23,?2),
??????m?DP?0,ADP设平面的法向量为m?(x2,y2,z2),则? ??????m?DA?0,所以
???y2?3z2?0,???2x2?0,取
m?(0,3,1). ??????13分
???∴cos??cos?m,n??∴
当
6?22?3t2?12?4AF?43?43,解得t?
34时
满
足
cos??
3. ??????15分 418.(本题满分15分)已知f(x)?ax2?bx?c(a?0),
(Ⅰ)当a=1,b=2,若f(x)?2?0有且只有两个不同的实根,求实数c的取值范围; (Ⅱ)设方程f(x)?x的两个实根为x1,x2,,且满足0?t?x1,x2?x1?1试判断f(t)与ax1的大小,并给出理由.
(1)f(x)?x2?2x?c?(x?1)2?c?1
??2?c?1?2
??1?c?3 ????6分
(Ⅱ)解法1:方程f(x)?x,即ax2?(b?1)x?c?0,由题意得
x1?x2?1?bc,x1x2?, aa2f(t)?x1?at2?bt?c?(ax1?bx1?c)?(t?x1)(at?ax1?b) (1) ????
10分
?x1?x2?1?b,?ax1?ax2?1?b ,即ax1?b?1?ax2 代入 (1)得 a2f(t)?x1?at2?bt?c?(ax1?bx1?c)?(t?x1)(at-ax2?1) ?0?t?x1,?t?x1?0 ,?0?t?x1,?at?ax2?1?ax1?ax2?1,
1?x2?x1?,?ax1?ax2??1,即at?ax2?1?ax1?ax2?1?0.
a所以
f(t)?x1 ????15
.解法2.设f(x)?x?a(x?x1)(x?x2)
?f(x)?a(x?x1)(x?x2)?x f(t)?x1?a(t?x1)(t?x2)?t?x1
1?a(t?x1)[(t?x2)?] (0?t?x1)
a1?a(t?x1)(x1?x2?)
a
?x2?x1?11 ?x2?x1??0 aa?f(t)?x1
解法3
f(x)?x?0
?ax2?(b?1)x?c?0
1?b?(b?1)2?4ac1?b?(b?1)2?4ac x1?x2?2a2a(b?1)2?4ac1x2?x1??
aa?(b?1)2?4ac?1
1?b?(b?1)2?4acb?x1???
2a2a?f(x)在(??,?b)?且0?t?x1 2a?f(t)?f(x1)?x1
解法4:
f(x)?x?0
?ax2?(b?1)x?c?0 ?x1?x2??b?1(1) a11b?x2?x1?,?x1?x2??,(2) (1)+(2)可得?x1?? ,后面证法与方法
aa2a3一致.
x219.(本题满分15分)已知椭圆C:?y2?1与直线l:y?kx?m相交于E、F两不同点,
2且直线l与圆O:x2?y2?原点).
(Ⅰ)证明:OE?OF; (Ⅱ)设??
解:(Ⅰ)因为直线l与圆O相切 所以圆O:x2?y2?2相切于点W(O为坐标3EWFW,求实数?的取值范围.
2的圆心到直线l的距离3d?m1?k2?2222,从而m?(1?k)?2分
33?x2??y2?1由?2 可得:(1?2k2)x2?4kmx?2m2?2?0 ?y?kx?m?设E(x1,y1),F(x2,y2)
4km2m2?2则x1?x2??,x1x2? ???????????????????5分 221?2k1?2k????????所以OE?OF?x1x2?y1y2?x1x2?(kx1?m)(kx2?m)
2m2?2?4k2m2?(1?k)x1x2?km(x1?x2)?m?(1?k)??m2221?2k1?2k 22223m?2k?22(1?k)?2k?2???01?2k21?2k2所以OE?OF ??????????????????????????????8分
EWOE2?(Ⅱ)方法1:由有射影定理可知?? 2FWOF?y?kx2?2设直线OE的方程为y?kx,与椭圆联立可得?x2 ?x?1221?2k??y?1?22k22同理可得x2?2 10
k?2222分
2(1?k2)()2OEk2?21311?2k???????(,2] 13222222(1?2k)2OF12k1?2k(1?2)(2)kk?22分
OE21? 当k不存在是,则E,F分别为椭圆的上下和左右顶点,则??22OF1所以??[,2] 15分
2x12x222?y1?1,?y22?1, 方法2?直线l与圆O相切于W,22EW????FWOE?r2OF?r222?2x?y?3?222x2?y2?32121x121?23 ????????????10分 2x21?23由(Ⅰ)知x1x2?y1y2?0,
22 ?y12y2?x1x2??y1y2,即x12x22x12x24?2x122从而xx?(1?)(1?),即x2?
222?3x122212x121?2?3x1223 ??????????????????????? 13分 ????24x21?231因为?2?x1?2,所以??[,2] ??????????????????15分
222?20.(本题满分15分)已知数列?an?,an?0,a1?0,an?a?1?a(n?N). ?1n?1n记Sn?a1?a2???an.Tn??111 ????1?a1(1?a1)(1?a2)(1?a1)(1?a2)?(1?an)求证:当n?N时(Ⅰ)0?an?an?1?1;(Ⅱ)Sn?n?2;(Ⅲ)Tn?3 证明:因为
22an?1?an?1?1?an(1)22an?an?1?an?1(2)(n?2)22 (1)(-2)得(an?1?an)(an?1?an?1)?an?an?1
所以(1)(-2)得an?1?an与an?an?1同号,即与a2?a1一致.因为a2??1?5,且2a2?a1?0, ?an?1?an?0
2222?an?an?1?an?1?1?an,?1?an?1?an?1?0 即an?1?1
根据①和②,可知0?an?an?1?1对任何n?N*都成立.
,2,?,n?1(n≥2)(Ⅱ)证明:由ak?12?ak?1?1?ak2,k?1,
2得an?(a2?a3???an)?(n?1)?a12. 2因为a1?0,所以Sn?n?1?an.
?an?1,
所以Sn?n?2. ????10分 (Ⅲ)证明:由ak?12?ak?1?1?ak2≥2ak,得
a1≤k?1(k?2,3,?,n?1,n≥3)
1?ak?12ak所以
a1≤n?2n(a≥3),
(1?a3)(1?a4)?(1?an)2a2ana11≤n?22?nn?(n≥3), ?2n?2(1?a2)(1?a3)?(1?an)2(a2?a2)2211???n?2?3, 22于是
故当n≥3时,Tn?1?1?又因为T1?T2?T3,
所以Tn?3. ????15分
相关推荐: