g(x)>0,f′(x)>0,函数f(x)单调递增;
当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减; 所以函数有一个极值点.
综上所述,当a<0时,函数f(x)有一个极值点;
88
当0≤a≤9时,函数f(x)无极值点;当a>9时,函数f(x)有两个极值点.
1.如果一个函数具有相同单调性的区间不止一个,这些单调区间不能用“∪”连接,而只能用逗号或“和”字隔开.
2.可导函数在闭区间[a,b]上的最值,就是函数在该区间上的极值及端点值中的最大值与最小值. 3.可导函数极值的理解
(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值;
(2)对于可导函数f(x),“f(x)在x=x0处的导数f ′(x)=0”是“f(x)在x=x0处取得极值”的必要不充分条件;
(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点.
4.求函数的单调区间时,若函数的导函数中含有带参数的有理因式,因式根的个数、大小、根是否在定义域内可能都与参数有关,则需对参数进行分类讨论. 5.求函数的极值、最值问题,一般需要求导,借助函数的单调性,转化为方程或不等式问题来解决,有正向思维——直接求函数的极值或最值;也有逆向思维——已知函数的极值或最值,求参数的值或范围,常常用到分类讨论、数形结合的思想.
相关推荐: