µÄ¾àÀëhp(m) µØÏÂË®ÉøÍ¸Îȶ¨ÐÔÑéËã ³Ðѹˮº¬Ë®²ã¶¥ÃæµÄѹÁ¦Ë®Í·¸ß¶Èhw(m) ¿Óµ×ͻӿÎȶ¨ÐÔ 4 ¦Ô(mm) ³Ðѹˮº¬Ë®²ã¶¥ÃæÖÁ¿Óµ×µÄÍÁ²ãºñ¶ÈD(m) 2¡¢ÍÁ²ã¡¢Ë®Ñ¹²ÎÊý ÐòÍÁÍÁºñð¤¾Û¶È²Á½ÇºÅ Ãû³Æ ¶Èh(m) Á¦c(kpa) ¦Ã(kN/m3) ¦Õ(¡ã) 1 2 3 Õ³ÐÔÍÁ Ë® Õ³ÐÔÍÁ 3 18 11 18 20 12 20 25 8 25 ÍÁÖØÄÚĦ±¥ºÍÍÁÖØ¶ÈË®¦Ãsat(kN/ÍÁºÏËã m3) 20 12 20 ÊÇ ÊÇ ÊÇ 3¡¢ºÉÔØ²ÎÊý ÀàÐÍ Âú²¼ºÉÔØ ÌõÐξֲ¿ºÉÔØ ¾àÖ§»¤±ß´¹Ö±»ù¿ÓƽÐлù¿ÓºÉÔØ×÷ÓÃÉîÔµµÄˮƽ¾àÀë±ßµÄ·Ö²¼¿í¶È±ßµÄ·Ö²¼³¤¶Èq(kpa) ¶Èd(m) a(m) b(m) l(m) 3 / 4 / 4 / / / 0 4¡¢¼ÆËãϵÊý ½á¹¹ÖØÒªÐÔϵÊý¦Ã0 Ô²»¡»¬¶¯Îȶ¨°²È«ÏµÊýKs ¿¹Ç㸲°²È«ÏµÊýKov ¾ÑéϵÊý¦Çb ǽÌå²ÄÁϵĿ¹¼ô¶ÏϵÊý¦Ì Ö÷¶¯ÍÁѹÁ¦¼ÆËã
1£©Ö÷¶¯ÍÁѹÁ¦ÏµÊý
Ka1=tan2(45¡ã- ¦Õ1/2£©= tan2(45-25/2)=£» Ka2=tan2(45¡ã- ¦Õ2/2£©= tan2(45-25/2)=£» Ka3=tan2(45¡ã- ¦Õ3/2£©= tan2(45-8/2)=£»
¿¹Â¡Æð°²È«ÏµÊýKb ͻӿÎȶ¨°²È«ÏµÊýKh 1 ×ۺϷÖÏîϵÊý¦ÃF ¿¹»¬Òư²È«ÏµÊýKsl Ka4=tan2(45¡ã- ¦Õ4/2£©= tan2(45-8/2)=£» Ka5=tan2(45¡ã- ¦Õ5/2£©= tan2(45-25/2)=£» 2£©ÍÁѹÁ¦¡¢Ë®²úÉúµÄˮƽºÉÔØ µÚ1²ãÍÁ£º
H1'=[¡Æ¦Ã0h0+¡Æq1]/¦Ã1=[0+3]/18=
Pak1ÉÏ =¦Ã1H1'=18¡Á¡Á¡Á20¡Á Pak1Ï =¦Ã1(h1+H1')=18¡Á+¡Á¡Á20¡Á µÚ2²ãÍÁ£º
H2'=[¡Æ¦Ã1h1+¡Æq1]/¦Ãsat2=[+3]/20=
Pak2ÉÏ =[¦Ãsat2H2'-¦Ãw(¡Æh1-ha)]+¦Ãw(¡Æh1-ha)=[20¡Á¡Á Pak2ÏÂ
=[¦Ãsat2(H2'+h2)-¦Ãw(¡Æh2-ha)]+¦Ãw(¡Æh1-ha)=[20¡Á+-10¡Á]¡Á¡Á20¡Á µÚ3²ãÍÁ£º3-4m
H3'=[¡Æ¦Ã2h2+¡Æq1]/¦Ãsat3=[+3]/12=
Pak3ÉÏ =[¦Ãsat3H3'-¦Ãw(¡Æh2-ha)]+¦Ãw(¡Æh2-ha)=[12¡Á¡Á]¡Á¡Á12¡Á Pak3
Ï =[¦Ãsat3(H3'+h3)-¦Ãw(¡Æh3-ha)]+¦Ãw(¡Æh2-ha)=[12¡Á+1)-10¡Á]¡Á¡Á12¡Á µÚ4²ãÍÁ£º
H4'=[¡Æ¦Ã3h3+¡Æq1+¡Æq1b1/(b1+2a1)]/¦Ãsat4=[+3+]/12=
Pak4ÉÏ =[¦Ãsat4H4'-¦Ãw(¡Æh3-ha)]+¦Ãw(¡Æh3-ha)=[12¡Á¡Á]¡Á¡Á12¡Á Pak4
Ï =[¦Ãsat4(H4'+h4)-¦Ãw(¡Æh4-ha)]+¦Ãw(¡Æh3-ha)=[12¡Á+-10¡Á µÚ5²ãÍÁ£º
H5'=[¡Æ¦Ã4h4+¡Æq1+¡Æq1b1/(b1+2a1)]/¦Ãsat5=[+3+]/20=
Pak5ÉÏ =[¦Ãsat5H5'-¦Ãw(¡Æh4-ha)]+¦Ãw(¡Æh4-ha)=[20¡Á¡Á Pak5Ï =[¦Ãsat5(H5'+h5)-¦Ãw(¡Æh5-ha)]+¦Ãw(¡Æh4-ha)=[20¡Á+-10¡Á]¡Á¡Á20¡Á 3£©Ë®Æ½ºÉÔØ
ÁÙ½çÉî¶È£ºZ0=Pak2ÏÂh2/(Pak2ÉÏ+ Pak2ÏÂ)=¡Á+=£» µÚ1²ãÍÁ Eak1=0kN£» µÚ2²ãÍÁ
Eak2=ÏÂZ0¡Á1=¡Á¡Á¡Á1=£» aa2=Z0/3+¡Æh3=3+3=£» µÚ3²ãÍÁ
Eak3=h3(Pa3ÉÏ+Pa3ÏÂ)¡Á1/2=1¡Á+¡Á1/2=£»
aa3=h3(2Pa3ÉÏ+Pa3ÏÂ)/(3Pa3ÉÏ+3Pa3ÏÂ)+¡Æh4=1¡Á(2¡Á+/(3¡Á+3¡Á+2=£» µÚ4²ãÍÁ
Eak4=h4(Pa4ÉÏ+Pa4ÏÂ)¡Á1/2=¡Á+¡Á1/2=£»
aa4=h4(2Pa4ÉÏ+Pa4ÏÂ)/(3Pa4ÉÏ+3Pa4ÏÂ)+¡Æh5=¡Á(2¡Á+/(3¡Á+3¡Á+=£» µÚ5²ãÍÁ
Eak5=h5(Pa5ÉÏ+Pa5ÏÂ)¡Á1/2=¡Á+¡Á1/2=£»
aa5=h5(2Pa5ÉÏ+Pa5ÏÂ)/(3Pa5ÉÏ+3Pa5ÏÂ)=¡Á(2¡Á+/(3¡Á+3¡Á=£» ÍÁѹÁ¦ºÏÁ¦£º
Eak=¦²Eaki=0++++=£» ºÏÁ¦×÷Óõ㣺
aa= ¦²(aaiEaki)/Eak=(0¡Á0+¡Á+¡Á+¡Á+¡Á/=£» ±»¶¯ÍÁѹÁ¦¼ÆËã
1£©±»¶¯ÍÁѹÁ¦ÏµÊý
Kp1=tan2(45¡ã+ ¦Õ1/2£©= tan2(45+8/2)=£»
Kp2=tan2(45¡ã+ ¦Õ2/2£©= tan2(45+8/2)=£» Kp3=tan2(45¡ã+ ¦Õ3/2£©= tan2(45+25/2)=£» 2£©ÍÁѹÁ¦¡¢Ë®²úÉúµÄˮƽºÉÔØ µÚ1²ãÍÁ£º
H1'=[¡Æ¦Ã0h0]/¦Ã1=[0]/11=0m
Ppk1ÉÏ =¦Ã1H1'Kp1+=11¡Á0¡Á+2¡Á12¡Á Ppk1Ï =¦Ã1(hi+H1')Kp1+=11¡Á+0)¡Á+2¡Á12¡Á µÚ2²ãÍÁ£º H2'=[¡Æ¦Ã1h1]/¦Ãsat2=[]/12=
Ppk2ÉÏ =[¦Ãsat2H2'-¦Ãw(¡Æh1-hp)]Kp2++¦Ãw(¡Æh1-hp)=[12¡Á¡Á Ppk2Ï =[¦Ãsat2(H2'+h2)-¦Ãw(¡Æh2-hp)]Kp2++¦Ãw(¡Æh1-hp)=[12¡Á+-10¡Á µÚ3²ãÍÁ£º
H3'=[¡Æ¦Ã2h2]/¦Ãsat3=[]/20=
Ppk3ÉÏ =[¦Ãsat3H3'-¦Ãw(¡Æh2-hp)]Kp3++¦Ãw(¡Æh2-hp)=[20¡Á¡Á Ppk3ÏÂ
=[¦Ãsat3(H3'+h3)-¦Ãw(¡Æh3-hp)]Kp3++¦Ãw(¡Æh2-hp)=[20¡Á+-10¡Á]¡Á+2¡Á20¡Á 3£©Ë®Æ½ºÉÔØ
µÚ1²ãÍÁ
Epk1=1¡Áh1(Pp1ÉÏ+Pp1ÏÂ)/2=1¡Á¡Á+/2=£»
ap1=h1(2Pp1ÉÏ+Pp1ÏÂ)/(3Pp1ÉÏ+3Pp1ÏÂ)+¡Æh2=¡Á(2¡Á+/(3¡Á+3¡Á+=£» µÚ2²ãÍÁ
Epk2=1¡Áh2(Pp2ÉÏ+Pp2ÏÂ)/2=1¡Á¡Á+/2=£»
ap2=h2(2Pp2ÉÏ+Pp2ÏÂ)/(3Pp2ÉÏ+3Pp2ÏÂ)+¡Æh3=¡Á(2¡Á+/(3¡Á+3¡Á+=£» µÚ3²ãÍÁ
Epk3=1¡Áh3(Pp3ÉÏ+Pp3ÏÂ)/2=1¡Á¡Á+/2=£»
ap3=h3(2Pp3ÉÏ+Pp3ÏÂ)/(3Pp3ÉÏ+3Pp3ÏÂ)=¡Á(2¡Á+/(3¡Á+3¡Á=£» ÍÁѹÁ¦ºÏÁ¦£º Epk=¦²Epki=++=£» ºÏÁ¦×÷Óõ㣺
ap= ¦²(apiEpki)/Epk=¡Á+¡Á+¡Á/=£» 3¡¢»ù¿ÓÄÚ²àÍÁ·´Á¦¼ÆËã 1£©Ö÷¶¯ÍÁѹÁ¦ÏµÊý
Kp1=tan2(45¡ã+ ¦Õ1/2£©= tan2(45+8/2)=£» Kp2=tan2(45¡ã+ ¦Õ2/2£©= tan2(45+8/2)=£» Kp3=tan2(45¡ã+ ¦Õ3/2£©= tan2(45+25/2)=£» 2£©ÍÁѹÁ¦¡¢Ë®²úÉúµÄˮƽºÉÔØ µÚ1²ãÍÁ£º
H1'=[¡Æ¦Ã0h0]/¦Ã1=[0]/11=0m Psk1ÉÏ 2
=¦Õ1-¦Õ1+c1)¡Æh0(1-¡Æh0/ld)¦Ô/¦Ôb+¦Ã1H1'Ka1=¡Á82-8+12)¡Á0¡Á(1-0/3)¡Á+11¡Á0¡Á=0kN/m2
Psk1ÏÂ
=¦Õ12-¦Õ1+c1)¡Æh1(1-¡Æh1/ld)¦Ô/¦Ôb+¦Ã1(h1+H1')Ka1=¡Á82-8+12)¡Á¡Á3)¡Á+11¡Á(0+¡Á=m2
µÚ2²ãÍÁ£º H2'=[¡Æ¦Ã1h1]/¦Ãsat2=[]/12= Psk2ÉÏ 2
=¦Õ2-¦Õ2+c2)¡Æh1(1-¡Æh1/ld)¦Ô/¦Ôb+[¦Ãsat2H2'-¦Ãw(¡Æh1-hp)]Kp2+¦Ãw(¡Æh1-hp)=¡Á82
-8+12)¡Á¡Á3)¡Á12/12+[12¡Á¡Á Psk2ÏÂ
=¦Õ22-¦Õ2+c2)¡Æh2(1-¡Æh2/ld)¦Ô/¦Ôb+[¦Ãsat2(H2'+h2)-¦Ãw(¡Æh2-hp)]Kp2+¦Ãw(¡Æh2-hp)=¡Á82-8+12)¡Á¡Á3)¡Á12/12+[12¡Á+-10¡Á µÚ3²ãÍÁ£º
H3'=[¡Æ¦Ã2h2]/¦Ãsat3=[]/20= Psk3ÉÏ
=¦Õ32-¦Õ3+c3)¡Æh2(1-¡Æh2/ld)¦Ô/¦Ôb+[¦Ãsat3H3'-¦Ãw(¡Æh2-hp)]Kp3+¦Ãw(¡Æh2-hp)=¡Á252-25+20)¡Á¡Á3)¡Á12/12+[20¡Á¡Á Psk3ÏÂ
=¦Õ32-¦Õ3+c3)¡Æh3(1-¡Æh3/ld)¦Ô/¦Ôb+[¦Ãsat3(H3'+h3)-¦Ãw(¡Æh3-hp)]Kp3+¦Ãw(¡Æh3-hp)=¡Á252-25+20)¡Á3¡Á(1-3/3)¡Á12/12+[20¡Á+-10¡Á]¡Á+10¡Á=m2
3£©Ë®Æ½ºÉÔØ µÚ1²ãÍÁ
Psk1=b0h1(Ps1ÉÏ+Ps1ÏÂ)/2=1¡Á¡Á(0+/2=£»
as1=h1(2Ps1ÉÏ+Ps1ÏÂ)/(3Ps1ÉÏ+3Ps1ÏÂ)+¡Æh2=¡Á(2¡Á0+/(3¡Á0+3¡Á+=£» µÚ2²ãÍÁ
Psk2=b0h2(Ps2ÉÏ+Ps2ÏÂ)/2=1¡Á¡Á+/2=£»
as2=h2(2Ps2ÉÏ+Ps2ÏÂ)/(3Ps2ÉÏ+3Ps2ÏÂ)+¡Æh3=¡Á(2¡Á+/(3¡Á+3¡Á+=£» µÚ3²ãÍÁ
Psk3=b0h3(Ps3ÉÏ+Ps3ÏÂ)/2=1¡Á¡Á+/2=£»
as3=h3(2Ps3ÉÏ+Ps3ÏÂ)/(3Ps3ÉÏ+3Ps3ÏÂ)=¡Á(2¡Á+/(3¡Á+3¡Á=£» ÍÁѹÁ¦ºÏÁ¦£º Ppk=¦²Ppki=++=£» ºÏÁ¦×÷Óõ㣺
as= ¦²(asiPski)/Ppk=¡Á+¡Á+¡Á/=£» Îȶ¨ÐÔÑéËã
1¡¢»¬ÒÆÎȶ¨ÐÔÑéËã
ΧÑߵĻ¬ÒÆÎȶ¨ÐÔÓ¦°´ÏÂʽÑéË㣺
(Epk+(G-¦ÌmB)tan¦Õ+cB)/Eak=+¡Á2)¡Átan(25¡ã)+20¡Á2)/=¡ÝKsl= Âú×ãÒªÇó£¡ 2¡¢Ç㸲Îȶ¨ÐÔÑéËã
ΧÑßµÄÇ㸲Îȶ¨ÐÔÓ¦°´ÏÂʽÑéË㣺
(Epkap+(G-¦ÌmB)aG)/(Eakaa)=¡Á+¡Á2)¡Á1)/¡Á=¡ÝKov= Âú×ãÒªÇó£¡
3¡¢ÕûÌ廬¶¯Îȶ¨ÐÔÑéËã
Ksi =¡Æ{cjlj+[(qjbj+¦¤Gj)cos¦Èj-¦Ìjlj]tan¦Õj}/¡Æ(qjbj+¦¤Gj)sin¦È cj¡¢¦Õj ©¤©¤µÚjÍÁÌõ»¬»¡Ãæ´¦ÍÁµÄÕ³¾ÛÁ¦(kPa)¡¢ÄÚĦ²Á½Ç(¡ã)£» bj©¤©¤µÚjÍÁÌõµÄ¿í¶È(m)£»
¦Èj©¤©¤µÚjÍÁÌõ»¬»¡ÃæÖе㴦µÄ·¨ÏßÓë´¹Ö±ÃæµÄ¼Ð½Ç(¡ã)£»
lj©¤©¤µÚjÍÁÌõµÄ»¬»¡¶Î³¤¶È(m)£¬È¡lj£½bj/cos¦Èj£» qj©¤©¤×÷ÓÃÔÚµÚjÍÁÌõÉϵĸ½¼Ó·Ö²¼ºÉÔØ±ê×¼Öµ(kPa) £» ¦¤Gj©¤©¤µÚjÍÁÌõµÄ×ÔÖØ(kN)£¬°´ÌìÈ»ÖØ¶È¼ÆË㣻
uj©¤©¤µÚjÍÁÌõÔÚ»¬»¡ÃæÉϵĿ×϶ˮѹÁ¦(kPa)£¬²ÉÓÃÂäµ×ʽ½ØË®á¡Ä»Ê±£¬¶ÔµØÏÂˮλÒÔϵÄɰÍÁ¡¢ËéʯÍÁ¡¢·ÛÍÁ£¬ÔÚ»ù¿ÓÍâ²à£¬¿ÉÈ¡uj£½¦Ãwhwaj£¬ÔÚ»ù¿ÓÄڲ࣬¿ÉÈ¡uj£½¦Ãwhwpj£»»¬»¡ÃæÔÚµØÏÂˮλÒÔÉÏ»ò¶ÔµØÏÂˮλÒÔϵÄÕ³ÐÔÍÁ£¬È¡uj£½0£»
¦Ãw©¤©¤µØÏÂË®ÖØ¶È(kN/m3)£»
hwaj©¤©¤»ù¿ÓÍâ²àµÚjÍÁÌõ»¬»¡ÃæÖеãµÄѹÁ¦Ë®Í·(m)£» hwpj©¤©¤»ù¿ÓÄÚ²àµÚjÍÁÌõ»¬»¡ÃæÖеãµÄѹÁ¦Ë®Í·(m)£» min{ Ks1 £¬Ks2 £¬¡¡£¬Ksi£¬¡¡}=¡ÝKs= Âú×ãÒªÇó£¡ 4¡¢¿¹Â¡ÆðÎȶ¨ÐÔÑéËã
1£©Ë®ÄàÍÁǽµ×Ãæ´¦µÄ¿¹Â¡ÆðÑéËã ¿¹Â¡ÆðÎȶ¨ÐÔ°´ÏÂʽ¼ÆË㣺 ¦Ãm1=¦²¦Ãi hi /(h+ld)=(3+3)=m ¦Ãm2=¦²¦Ãi hi /ld=3=m
Nq=tan2(45¡ã+¦Õ/2)e¦Ðtan¦Õ=tan2(45¡ã+25/2)e¦Ðtan25= Nc=(Nq-1)/tan¦Õ=/tan(25)=
(¦Ãm2ldNq+cNc)/(¦Ãm1(h+ld)+q0)=¡Á3¡Á+20¡Á/¡Á(3+3)+=¡ÝKb= Âú×ãÒªÇó£¡ 5¡¢ÉøÍ¸Îȶ¨ÐÔÑéËã
³Ðѹˮ×÷ÓÃϵĿӵ×ͻӿÎȶ¨ÐÔÑéË㣺
D ¦Ã /(hw¦Ãw) =¡Æhi¦Ãi /(hw¦Ãw)=¡Á11+¡Á18)/(4¡Á10)= D ¦Ã /(hw¦Ãw) =¡ÝKh= Âú×ãÒªÇó£¡ Õý½ØÃæ³ÐÔØÁ¦ÑéËã
È¡µ¥Î»³¤¶ÈΧÑß½øÐмÆËã 1¡¢½ØÃæÍ侨¼ÆËã
¼ÆËã¼òͼ(kN)
Íä¾ØÍ¼(kN¡¤m)
Mk= M=¦Ã0¦ÃFMk=1¡Á¡Á= ¼ôÁ¦Í¼(kN) Vk=
2¡¢Õý½ØÃæÓ¦Á¦¼ÆËã 1£©ÀÓ¦Á¦
6M/B2-¦Ãcsz=6¡Á22-20¡Á=mm2¡Ü=mm2 Âú×ãÒªÇó£¡ 2£©Ñ¹Ó¦Á¦
6M/B2+¦Ã0¦ÃF¦Ãcsz=6¡Á22+1¡Á¡Á20¡Á=mm2¡Üfcs=11N/mm2 Âú×ãÒªÇó£¡ 3£©¼ôÓ¦Á¦
(Eaki-¦ÌGi-Epki)/B= Âú×ãÒªÇó£¡ ½áÂÛ
×ÛÉÏËùÊö£º±¾¹¤³Ì¼Æ»®Ê©¹¤Ê±¼ä¶ÎΪ·ÇÑ´ÆÚÊ©¹¤£¬Í¬Ê±¿¼Âǵ½Ò»µ©¹¤ÆÚÑÓÎó£¬Ñ´ÆÚÄÚÈÔÓнṹʩ¹¤£¬ÎÒ²¿¸ù¾ÝÀúÄêÑ´ÆÚ×î¸ßˮλÏߺͷçÀËµÈÆøÏóÒòËØ£¬±£Ö¤2017Ä갲ȫ¶ÈÑ´£¬ÁÙʱΧÑ߿ɵÖÓù½ðÉ½Çø¹æ»®³ýÀÔ×î¸ßÃ×µÄˮλ¡£ ¸½Í¼Ò»£º
ΧÑßλÖ÷ֲ¼Ê¾Òâͼ
Ïà¹ØÍÆ¼ö£º