第一范文网 - 专业文章范例文档资料分享平台

新湘教出版九年级下册数学全册课程教案 

来源:用户分享 时间:2025/7/27 23:08:31 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

-/

第1章 二次函数 1.1 二次函数

【知识与技能】

1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.

2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围. 【过程与方法】

经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系. 【情感态度】

体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识. 【教学重点】

二次函数的概念. 【教学难点】

在实际问题中,会写简单变量之间的二次函数关系式教学过程.

一、情境导入,初步认识

1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0

2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有. 二、思考探究,获取新知

-/

二次函数的概念及一般形式

在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a, b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.

注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.

三、典例精析,掌握新知

例1 指出下列函数中哪些是二次函数.

(1)y=(x-3)2-x2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=

22

;(5)y=5-x+x. 2x【分析】先化为一般形式,右边为整式,依照定义分析. 解:(2)(5)是二次函数,其余不是.

【教学说明】判定一个函数是否为二次函数的思路: 1.将函数化为一般形式. 2.自变量的最高次数是2次.

3.若二次项系数中有字母,二次项系数不能为0. 例2 讲解教材P3例题.

【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m2-m)x2+mx+(m+1)(m是常数),当m为何值时: (1)函数是一次函数; (2)函数是二次函数.

【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.

?m2?m?0或1?m?0 得?解:(1)由? ,

?m?0?m?0∴m=1.即当m=1时,函数y=(m2-m)x2+mx+(m+1)是一次函数. (2)由m2-m≠0得m≠0且m≠1,

-/

∴当m≠0且m≠1时,函数y=(m2-m)x2+mx+(m+1)是二次函数.

【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.

四、运用新知,深化理解

1.下列函数中是二次函数的是( ) A. y?13223

B.y=3x+2x C.y=(x-2)-x D.y?1?2x2 2x?2x?32.二次函数y=2x(x-1)的一次项系数是( ) A.1 B.-1 C.2 D.-2 3.若函数y?(k?3)xk2?3k?2?kx?1 是二次函数,则k的值为( )

A.0 B.0或3 C.3 D.不确定

4.若y=(a+2)x2-3x+2是二次函数,则a的取值范围是 . 5.已知二次函数y=1-3x+5x2,则二次项系数a= ,一次项系数b= ,常数项c= . 6.某校九(1)班共有x名学生,在毕业典礼上每两名同学都握一次手,共握手y次,试写出y与x之间的函数关系式 ,它 (填“是”或“不是”)二次函数.

7.如图,在边长为5的正方形中,挖去一个半径为x的圆(圆心与正方形的中心重合),剩余部分的面积为y.

(1)求y关于x的函数关系式; (2)试求自变量x的取值范围;

(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).

【答案】1.D 2.D 3.A 4.a≠-2 5.5,-3,1 6.y?7.(1)y=25-πx2=-πx2+25. (2)0<x≤52.

121x?x 是 22-/

(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4. 即剩余部分的面积约为12.4.

【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.

五、师生互动,课堂小结

1.师生共同回顾二次函数的有关概念.

2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流. 【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.

1.教材P4第1~3题.

2.完成同步练习册中本课时的练习.

本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.

-/

1.2 二次函数的图象与性质

第1课时 二次函数y=ax2(a>0)的图象与性质

【知识与技能】

1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.

【过程与方法】

经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯. 【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性. 【教学重点】

1.会画y=ax2(a>0)的图象. 2.理解,掌握图象的性质. 【教学难点】

新湘教出版九年级下册数学全册课程教案 .doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c8yz1y5up1j207lq1bbd16zh7s4eqd201d3x_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top