区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;
联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
勾股定理练习
一.填空题:
1. 在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________; (2)b=8,c=17,则S△ABC=________。
2.若一个三角形的三边之比为5∶12∶13,则这个三角形是________(按角分类)。 3. 直角三角形的三边长为连续自然数,则其周长为________。
4.传说,古埃及人曾用"拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_______厘米,______厘米,________厘米,其中的道理是______________________.
5.命题“对顶角相等”的逆命题为___________________,它是____命题.(填“真”或“假”)
6.观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;……;你有没有发现其中的规律?请用你发现的规律写出接下来的式子:____________________________。
7.利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图(最早由三国时期的数学家赵
爽给出的).从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积. 因而c2= + ,化简后即为c2= .
B
c a b
A 第8题图
8. 一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是各种学习资料,仅供学习与交流
学习资料
_____________。 二.选择题:
9.观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组 A. 1 B. 2 C. 3 D. 4
10.三个正方形的面积如图,正方形A的面积为( )
A. 6 B.4 C. 64 D. 8
11.已知直角三角形的两条边长分别是5和12,则第三边为 ( ) A. 13 B.
610 A 119 C.13或119 D. 不能确定 12.下列命题①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1。其中正确的是( ) A、①② B、①③ C、①④ D、②④ 13.三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形.
14.如图一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距 ( ) A、25海里 B、30海里 C、35海里 D、40海里
15. 已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A、40 B、80 C、40或360 D、80或360
16.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( ) A、450a元 B、225a 元 C、150a元 D、300a元
北
20m 30m A 东 150°
第16题图 南 第14题
三.解答题:
17.如图1,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( ) (A)CD、EF、GH (B)AB、EF、GH (C)AB、CD、GH (D)AB、CD、EF
19.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线长,已知门宽4尺, 求竹竿高与门高。
各种学习资料,仅供学习与交流
学习资料
20.一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?
A
A′
O B′
B 第20题图
21.如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。如果M为CD边的中点,
求证:DE:DM:EM=3:4:5。
图5
3、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。
各种学习资料,仅供学习与交流
学习资料
八年级上北师大版第一章勾股定理测试题
一、选择题(每小题3分,共30分)
1.下列各组中,不能构成直角三角形的是 ( ).
(A)9,12,15 (B)15,32,39 (C)16,30,32 (D)9,40,41
2. 如图1,直角三角形ABC的周长为24,且AB:BC=5:3,则AC= ( ).
(A)6 (B)8 (C)10 (D)12
3. 已知:如图2,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的
面积为 ( ).
(A)9 (B)3 (C)
99 (D) 42 4. 如图3,在△ABC中,AD⊥BC与D,AB=17,BD=15,DC=6,则AC的长为( ).
(A)11 (B)10 (C)9 (D)8 5. 若三角形三边长为a、b、c,且满足等式(a?b)?c?2ab,则此三角形是( ). (A)锐角三角形 (B)钝角三角形 (C)等腰直角三角形 (D)直角三角形
6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).
(A)6 (B)8.5 (C)
222060 (D) 1313 7. 高为3,底边长为8的等腰三角形腰长为 ( ).
(A)3 (B)4 (C)5 (D)6
8. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再
沿边长爬行一周需 ( ). (A)6秒 (B)5秒 (C)4秒 (D)3秒
9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个
大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分
别是a、b,那么(a?b) 的值为 ( ).
(A)49 (B)25 (C)13 (D)1
10. 如图5所示,在长方形ABCD中,E、F分别是AB、BC上的点,且BE=12,BF=16,则由点E到F的最短距离为 ( ). (A)20 (B)24 (C)28 (D)32 各种学习资料,仅供学习与交流
2