【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.
【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小. ∵D(∴H(
,0),A(3,0), ,0),
x+4,
∴直线CH解析式为y=﹣∴x=3时,y=
,
)
∴点E坐标(3,故选:B.
10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2
,E、F分别是AD、
CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为( )
A.2 B. C. D.3
【考点】三角形的面积.
【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果. 【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H, ∵∠ABC=90°,AB=BC=2∴AC=
=
,
=4,
∵△ABC为等腰三角形,BH⊥AC, ∴△ABG,△BCG为等腰直角三角形, ∴AG=BG=2 ∵S△ABC=
?AB?AC=
×2
×2
=4,
∴S△ADC=2, ∵
=2,
∴GH=∴BH=又∵EF=
BG=,
,
AC=2, ?EF?BH=
×2×
=
,
∴S△BEF=故选C.
二、填空题(共8小题,每小题3分,满分24分) 11.分解因式:x2﹣1= (x+1)(x﹣1) . 【考点】因式分解-运用公式法.
【分析】利用平方差公式分解即可求得答案. 【解答】解:x2﹣1=(x+1)(x﹣1). 故答案为:(x+1)(x﹣1).
12.当x= 2 时,分式
的值为0.
【考点】分式的值为零的条件.
【分析】直接利用分式的值为0,则分子为0,进而求出答案. 【解答】解:∵分式∴x﹣2=0, 解得:x=2. 故答案为:2.
13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是 乙 运动员.(填“甲”或“乙”) 【考点】方差.
【分析】根据方差的定义,方差越小数据越稳定. 【解答】解:因为S
2
甲
的值为0,
=0.024>S
2
乙
=0.008,方差小的为乙,
所以本题中成绩比较稳定的是乙. 故答案为乙.
14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是 72 度.
【考点】条形统计图;扇形统计图.
【分析】根据文学类人数和所占百分比,求出总人数,然后用总人数乘以艺术类读物所占的百分比即可得出答案.
【解答】解:根据条形图得出文学类人数为90,利用扇形图得出文学类所占百分比为:30%,
则本次调查中,一共调查了:90÷30%=300(人), 则艺术类读物所在扇形的圆心角是的圆心角是360°×故答案为:72.
15.不等式组
的最大整数解是 3 .
=72°;
【考点】一元一次不等式组的整数解.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.
【解答】解:解不等式x+2>1,得:x>﹣1, 解不等式2x﹣1≤8﹣x,得:x≤3, 则不等式组的解集为:﹣1<x≤3, 则不等式组的最大整数解为3, 故答案为:3.
16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为
.
相关推荐: