第一范文网 - 专业文章范例文档资料分享平台

高考数学专题练习——圆锥曲线(一)

来源:用户分享 时间:2025/11/18 23:10:20 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

解得或(舍去),

∴黄金双曲线”的离心率e等于

1?33. 35.

33

34.2

5 2的准线方程为作直线

, 设

, 则

, 且

的中点为

, 分

易知抛物线别过点义, 得

的垂线, 垂足分别为, 由抛物线定

三点共线时取等号), 即

(当且仅当

.

中点到轴的最短距离为

36.3?1 37.2

uuuruuuruuuruuuuruuuruuuurBFF,F2的中点, 所 由F1的中点,F1A?AB,F1B?F2B?0知A是1B?F2B,又O是1??BOA, 又根据两渐近以OA为中位线且OA?BF1, 所以OB?OF1, 因此?FOA1??F2OB, 所以?F2OB?60?, e?1?()2?1?tan260??2. 线对称, ?FOA1ba

39.15 方法1:由题意可知|OF|=|OM|=c=2,

22由中位线定理可得PF1?2|OM|?4, 设P(x,y)可得(x?2)?y?16,

x2y2联立方程??1

95可解得x??321,x?(舍), 点P在椭圆上且在x轴的上方, 2215?2?15 12求得P????315?,, 所以kPF???22?

方法2:焦半径公式应用

解析1:由题意可知|OF|=|OM|=c=2,

由中位线定理可得PF1?2|OM|?4, 即a?exp?4?xp??3 2?315?求得P???2,2??, 所以kPF??40.1 41.8

15?2?15. 12F(1, 0)为抛物线C:y2=4x的焦点, E(-1, 0)为其准线与x轴的交点, 设过F的直线为y=k(x-1), 代入抛物线方程y2=4x, 可得 k2x2-(2k2+4)x+k2=0,

设A(x1, y1), B(x2, y2),

则中点

解得k2=1, 则x1+x2=6, 由抛物线的定义可得|AB|=x1+x2+2=8. 38.(3,15)

x2y2?1可知, a?6, c?4, 由M为C上一点且在第一象限, 故等已知椭圆C:?3620腰三角形?MF1F2中MF1?F1F2?8,

82?2215?MF2?2a?MF1?4,sin?F1F2M?,yM?MF2sin?F1F2M?15, 84x2y2?1可得xM?3.故M的坐标为(3,15). 代入C:?3620

搜索更多关于: 高考数学专题练习——圆锥曲线(一) 的文档
高考数学专题练习——圆锥曲线(一).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c910dn51ywb0wk4t3v4f03ibqw7s1xb00tkz_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top