18.(8分)如图,一次函数y?kx?1(k?0)与反比例函数y?m(m≠0)的图象有公共点 xA(1,2).直线⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,点C. (1)求一次函数与反比例函数的解析式; (2)求△ABC的面积?
解:(1)将A(1,2)代入一次函数解析式得:k?1?2,即k?1,
∴一次函数解析式为y?x?1 ··························································· 1分 将A(1,2)代入反比例解析式得:m?2, ∴反比例解析式为y?2 ··································································· 2分 x(2)(方法一)设一次函数与x轴交于D点,令y?0,求出x??1,
即OD=1, ······················································································ 3分 ∵A(1,2),
∴AE=2,OE=1, ············································································· 4分 ∵N(3,0),
∴点B、点C的横坐标均为3, ······················································· 5分 将x?3代入一次函数得:y?4, 将x?3代入反比例解析式得:y?∴B(3,4),即ON=3,BN=4, C(3,
2
, ················································ 6分 3
22),即CN=, ··································································· 7分 33∴S△ABC=S△BDN﹣S△ADE﹣S梯形AECN
=
1112×4×4﹣×2×2﹣×(+2)×2=2223. ···································· 9分
(2)(方法二)∵N(3,0),
∴点B、点C的横坐标均为3, ·························································· 3分 将x?3代入一次函数得:y?4, 将x?3代入反比例解析式得:y?∴B(3,4),即ON=3,BN=4, C(3,
2, ················································ 4分 322),即CN=,∴B C=BN-CN=33
5分
过A作AM⊥BC垂足为M,∵A(1,2),∴AM=ON-OE=3-1=2 7分 ∴S△ABC=
19.(6分)某县九年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:
分 布 表
分 组 49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合 计 请结合图表完成下列问题:
(1)表中的a? 、b= 、c= . (2)请把频数分布直方图补充完整;
(3)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”,这次15000名学生中约有多少人评为“B”?
解:(1)表中的a? 80 、b= 0.05 、c= 0.31 .
(2) (图略)
(3)15000×(0.20+0.31)= 7650(人), 答:(略).
频 数 20 32 a 124 144 400 频 率 b 0.08 0.20 c 0.36 1 160 140 120 100 80 60 40 20 1BC·AM=2 9分
┉┉┉ M
频数(人) 124 144 32 49.5 59.5 69.5 79.5 89.5 100.5 成绩(分)
20.(6分)四边形ABCD、DEFG都是正方形,连接AE、CG.
(1)求证:AE=CG;
(2)观察图形,猜想AE与CG之间的位置关系,
并证明你的猜想.
(1) 证明: 如图,
∵ AD=CD,DE=DG,∠ADC=∠GDE=90o, 又 ∠CDG=90o +∠ADG=∠ADE,
∴ △ADE≌△CDG. ∴ AE=CG.
(2)猜想: AE⊥CG. 证明: 如图,
设AE与CG交点为M,AD与CG交点为N. ∵ △ADE≌△CDG, ∴ ∠DAE=∠DCG. 又∵ ∠ANM=∠CND, ∴ △AMN∽△CDN. ∴ ∠AMN=∠ADC=90o.∴ AE⊥CG.
21.(6分)某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天比甲工厂多加工20件.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
解:设甲工厂每天能加工x件,则乙工厂每天能加工(x+20)件.
12001200 - = 10, 解得x1 = 40,x2 = -60.
x?20x经检验,x1 = 40,x2 = -60都是原方程的根. ∵工作效率不能为负数, ∴x = 40. 当x = 40时,x+20 = 40+20 = 60.
∴甲工厂每天能加工40件,乙工厂每天能加工60件.
22. (5分)如图,在边长均为1的小正方形网格纸中,△OAB的顶点O、A、B均 在格点上,且O是直角坐标系的原点,点A在x轴上.
(1)将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2∶1,画出△OA1B1 .(所画△OA1B1与△OAB在原点两侧).
(2)求出线段A1B1所在直线的函数关系式.
答案:解:(1)图略 (2分) (2)由题意得: A1(4,0),B1(2,-4) (2分)
相关推荐: