用函数的自变量取值范围和其单调性即可求得函数的最值; (3)结合(2)得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x,在此,必须把(m﹣10)正负性考虑清楚,即m>10,m=10,m<10三种情况,最终才能得出结论.即怎样安排,完全取决于m的大小. 解答: 解:(1)设生产A型挖掘机x台,则B型挖掘机(100﹣x)台, 由题意得22400≤200x+240(100﹣x)≤22500, 解得37.5≤x≤40. ∵x取非负整数, ∴x为38,39,40. ∴有三种生产方案 ①A型38台,B型62台; ②A型39台,B型61台; ③A型40台,B型60台. (2)设获得利润W(万元),由题意得W=50x+60(100﹣x)=6000﹣10x ∴当x=38时,W最大=5620(万元), 即生产A型38台,B型62台时,获得最大利润. (3)由题意得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x 总之,当0<m<10,则x=38时,W最大,即生产A型38台,B型62台; 当m=10时,m﹣10=0则三种生产方案获得利润相等; 当m>10,则x=40时,W最大,即生产A型40台,B型60台. 点评: 考查学生解决实际问题的能力,试题的特色是在要求学生能读懂题意,并且会用函数知识去解题,以及会讨论函数的最大值.要结合自变量的范围求函数的最大值,并要把(m﹣10)正负性考虑清楚,分情况讨论问题. 25.(12分)(2013?天水)如图1,已知抛物线y=ax+bx(a≠0)经过A(3,0)、B(4,4)两点. (1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
2
考点: 二次函数综合题. 第 13 页 共 19 页
分析: (1)利用待定系数法求出二次函数解析式即可; (2)根据已知条件可求出OB的解析式为y=x,则向下平移m个单位长度后的解析式为:y=x﹣m.由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和D点坐标; (3)综合利用几何变换和相似关系求解. 方法一:翻折变换,将△NOB沿x轴翻折; 方法二:旋转变换,将△NOB绕原点顺时针旋转90°. 特别注意求出P点坐标之后,该点关于直线y=﹣x的对称点也满足题意,即满足题意的P点有两个,避免漏解. 2解答: 解:(1)∵抛物线y=ax+bx(a≠0)经过A(3,0)、B(4,4) ∴将A与B两点坐标代入得:∴抛物线的解析式是y=x﹣3x. (2)设直线OB的解析式为y=k1x,由点B(4,4), 得:4=4k1,解得:k1=1 ∴直线OB的解析式为y=x, ∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m, 2∵点D在抛物线y=x﹣3x上, 2∴可设D(x,x﹣3x), 又∵点D在直线y=x﹣m上, ∴x﹣3x=x﹣m,即x﹣4x+m=0, ∵抛物线与直线只有一个公共点, ∴△=16﹣4m=0, 解得:m=4, 此时x1=x2=2,y=x﹣3x=﹣2, ∴D点的坐标为(2,﹣2). (3)∵直线OB的解析式为y=x,且A(3,0), ∴点A关于直线OB的对称点A′的坐标是(0,3), 根据轴对称性质和三线合一性质得出∠A′BO=∠ABO, 设直线A′B的解析式为y=k2x+3,过点(4,4), ∴4k2+3=4,解得:k2=, ∴直线A′B的解析式是y=, 2222,解得:, ∵∠NBO=∠ABO,∠A′BO=∠ABO, ∴BA′和BN重合, 即点N在直线A′B上, ∴设点N(n,∴=n﹣3n, 2),又点N在抛物线y=x﹣3x上, 2解得:n1=﹣,n2=4(不合题意,舍去) 第 14 页 共 19 页
∴N点的坐标为(﹣, 方法一: ). 如图1,将△NOB沿x轴翻折,得到△N1OB1, 则N1(,),B1(4,﹣4), ∴O、D、B1都在直线y=﹣x上. ∵△P1OD∽△NOB,△NOB≌△N1OB1, ∴△P1OD∽△N1OB1, ∴, ∴点P1的坐标为(,). ,), 将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(综上所述,点P的坐标是(,)或(,). 方法二: 如图2,将△NOB绕原点顺时针旋转90°,得到△N2OB2, 则N2(,),B2(4,﹣4), ∴O、D、B1都在直线y=﹣x上. ∵△P1OD∽△NOB,△NOB≌△N2OB2, ∴△P1OD∽△N2OB2, ∴, ∴点P1的坐标为(,). ,), 将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(综上所述,点P的坐标是(,)或(,). 第 15 页 共 19 页
点评: 本题是基于二次函数的代数几何综合题,综合考查了待定系数法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题. 26.(12分)(2013?天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD. (1)求直线AB的解析式;
(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标; (3)是否存在点P,使△OPD的面积等于明理由.
?若存在,请求出符合条件的点P的坐标;若不存在,请说
第 16 页 共 19 页
相关推荐: