第一范文网 - 专业文章范例文档资料分享平台

(完整word版)最新浙教版初中数学八年级下册知识点总结,推荐文档

来源:用户分享 时间:2025/6/26 2:29:50 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

形.

3.平行四边形的判别方法

①定义:两组对边分别平行的四边形是平行四边形 ②方法1:两组对角分别相等的四边

形是平行四边形

③方法2:两组对边分别相等的四边形是平行四边形 ④方法3:对角线互相平分的四边形

是平行四边形

⑤方法4:一组平行且相等的四边形是平行四边形

第五章 特殊的平行四边形

1.几种特殊的平行四边形

(1)矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形

性质: ①边:对边平行且相等; ②角:对角相等、邻角互补;

③对角线:对角线互相平分且相等; ④对称性:轴对称图形(对边中点连线所在直

线,2条).

(2)菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)

性质:①边:四条边都相等; ②角:对角相等、邻角互补;

③对角线:对角线互相垂直平分且每条对角线平分每组对角; ④对称性:轴对称图形(对角线所在直线,2条).

(3)正方形:四条边都相等,四个角都是直角的四边形是正方形。

性质:①边:四条边都相等; ②角:四角相等;

③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).

2.几种特殊四边形的判定方法

(1)矩形的判定:满足下列条件之一的四边形是矩形

①有一个角是直角的平行四边形; ②对角线相等的平行四边形; ③四个角都相等 (2)菱形的判定:满足下列条件之一的四边形是矩形

①有一组邻边相等的平行四边形; ②对角线互相垂直的平行四边形; ③四条边都相等. (3)正方形的判定:满足下列条件之一的四边形是正方形.

① 有一组邻边相等 且有一个直角 的平行四边形

② 有一组邻边相等 的矩形; ③ 对角线互相垂直 的矩形. ④ 有一个角是直角 的菱形 ⑤ 对角线相等 的菱形; 3.几种特殊四边形的常用说理方法与解题思路分析

(1)识别矩形的常用方法

① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角. ② 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等. ③ 说明四边形ABCD的三个角是直角. (2)识别菱形的常用方法

① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等. ② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直. ③ 说明四边形ABCD的四条相等. (3)识别正方形的常用方法

5

① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等. ② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD为矩形,再说明矩形的一组邻边相等. ④ 先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.

第六章 反比例函数 (1)反比例函数 如果y?k(k是常数,k≠0),那么y叫做x的反比例函数. x(2)反比例函数的图象

反比例函数的图象是双曲线. (3)反比例函数的性质

①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.

②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.

③反比例函数图象关于直线y=±x对称,关于原点对称. (4)k的两种求法

①若点(x0,y0)在双曲线y?②k的几何意义: 若双曲线y?k上,则k=x0y0. xk11上任一点A(x,y),AB⊥x轴于B,则S△AOB?OB?AB?|x|?|y| x221|k|. 2(5)正比例函数和反比例函数的交点问题 ?2(k2?若正比例函数y=k1x(k1≠0),反比例函数y?x?0),则

k当k1k2<0时,两函数图象无交点;

当k1k2>0时,两函数图象有两个交点,坐标分别为(k2k,k1k2),(?2,?k1k2).由k1k1此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.

(6)对于双曲线上的点A、B,有两种三角形的面积(S△AOB)要会求(会表示),如图7-1所示.

6

(完整word版)最新浙教版初中数学八年级下册知识点总结,推荐文档.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c956202oxyu667gj1yjqg01k8300wxv01cr8_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top