第一范文网 - 专业文章范例文档资料分享平台

中值定理与导数的应用导数、微分习题及答案

来源:用户分享 时间:2025/11/28 21:42:50 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

第三章 中值定理与导数的应用

(A)

1.在下列四个函数中,在??1,1?上满足罗尔定理条件的函数是( ) A.y?8x?1 B.y?4x2?1 C.y?2.函数f?x??1 D.y?sinx 2x1满足拉格朗日中值定理条件的区间是 ( ) x A.??2,2? B. ??2,0? C.?1,2? D.?0,1? 3.方程x5?5x?1?0在??1,1?内根的个数是 ( ) A.没有实根 B.有且仅有一个实根 C.有两个相异的实根 D.有五个实根 4.若对任意x??a,b?,有f??x??g??x?,则 ( ) A.对任意x??a,b?,有f?x??g?x? B.存在x0??a,b?,使f?x0??g?x0?

C.对任意x??a,b?,有f?x??g?x??C0(C0是某个常数) D.对任意x??a,b?,有f?x??g?x??C(C是任意常数) 5.函数f?x??3x5?5x3在R上有 ( )

A.四个极值点; B.三个极值点 C.二个极值点 D. 一个极值点 6.函数f?x??2x3?6x2?18x?7的极大值是 ( ) A.17 B.11 C.10 D.9

7.设f?x?在闭区间??1,1?上连续,在开区间??1,1?上可导,且f??x??M,

f?0??0,则必有 ( )

A.f?x??M B.f?x??M C.f?x??M D.f?x??M 8.若函数f?x?在?a,b?上连续,在?a,b?可导,则 ( ) A.存在???0,1?,有f?b??f?a??f????b?a???b?a? B.存在???0,1?,有f?a??f?b??f??a???b?a???b?a?

1

C.存在???a,b?,有f?a??f?b??f?????a?b? D.存在???a,b?,有f?b??f?a??f?????a?b?

9.若a2?3b?0,则方程f?x??x3?ax2?bx?c?0( )

A.无实根 B.有唯一的实根 C.有三个实根 D.有重实根

x2sin110.求极限limxx?0sinx时,下列各种解法正确的是 ( )

A.用洛必塔法则后,求得极限为0

B.因为lim1x?0x不存在,所以上述极限不存在

C.原式?limxx?0sinx?xsin1x?0 D.因为不能用洛必塔法则,故极限不存在 11.设函数y?2x1?x2,在 ( ) A.???,???单调增加 B.???,???单调减少 C.??1,1?单调增加,其余区间单调减少 D.??1,1?单调减少,其余区间单调增加

12.曲线y?ex1?x ( )

A.有一个拐点 B.有二个拐点 C.有三个拐点 D.13.指出曲线y?x3?x2的渐近线 ( ) A.没有水平渐近线,也没有斜渐近线 B.x?3为其垂直渐近线,但无水平渐近线 C.即有垂直渐近线,又有水平渐近线 D. 只有水平渐近线

214.函数f?x??x3??x2?1?13在区间?0,2?上最小值为 ( )

A.

7294 B.0 C.1 D.无最小值 15.求limx?ln?1?x?x?0x2 2

无拐点 ?11?16.求lim? ???x?0?ln??1?x?x?17.求lim61?2sinx

?cos3xx?12x18.求lim?1?xx?0?

1lnx???19.求lim??arctgx?x???2??

20.求函数y?x3?3x2?9x?14的单调区间。 21.求函数y?2ex?e?x的极值。 22.若x?0,证明ex?1?x/

x2?ln?1?x??x。 23.设x?0,证明x?2ln2x24.求函数y?的单调区间与极值。

x1?25.当a为何值时,y?asinx?sin3x在x?处有极值?求此极值,并说

33明是极大值还是极小值。

x2y226.求内接于椭圆2?2?1,而面积最大的矩形的边长。

ab27.函数y?ax3?bx2?cx?d?a?0?的系数满足什么关系时,这个函数没有极值。

4x228.试证y?xsinx的拐点在曲线y?上。

4?x2229.试证明曲线y?x?1有三个拐点位于同一直线上。 x2?130.试决定y?kx2?3中的k的值,使曲线的拐点处的法线通过原点。

(B)

1.函数f?x??38x?x2,则 ( )

3

??2 A.在任意闭区间?a,b?上罗尔定理一定成立

B.在?0,8?上罗尔定理不成立 C.在?0,8?上罗尔定理成立 D. 在任意闭区间上,罗尔定理都不成立

2.下列函数中在?1,e?上满足拉格朗日定理条件的是( ) A.ln?lnx? B.lnx C.

1 D.ln?2?x? lnx3.若f?x?为可导函数,?为开区间?a,b?内一定点,而且有f????0,

?x???f??x??0,则在闭区间?a,b?上必有 ( )

A.f?x??0 B. f?x??0 C.f?x??0 D. f?x??0 4.若f?x?在开区间?a,b?内可导,且对?a,b?内任意两点x1,x2恒有

2f?x2??f?x1???x2?x1?则必有( )

A.f??x??0 B.f??x??x C.f?x??x D.f?x??C(常数) 5.设limx?x0f?x?f??x?f?x?为未定型,则lim存在是lim也存在的 ( )

x?xx?x0g?x?0g??x?g?x? A.必要条件 B.充分条件

C.充分必要条件 D. 既非充分也非必要条件

6.已知f?x?在?a,b?上连续,在?a,b?内可导,且当x??a,b?时,有f??x??0,又已知f?a??0,则 ( )

A.f?x?在?a,b?上单调增加,且f?b??0 B.f?x?在?a,b?上单调减少,且f?b??0 C.f?x?在?a,b?上单调增加,且f?b??0

D.f?x?在?a,b?上单调增加,但f?b?正负号无法确定 7.函数y?xarctgx的图形,在 ( )

A.???,???处处是凸的 B.???,???处处是凹的 C.???,0?为凸的,在?0,???为凹的 D.???,0?为凹的,在?0,???为凸的

4

中值定理与导数的应用导数、微分习题及答案.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c96s0m8ez4e570pk9t1v8_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top