第一范文网 - 专业文章范例文档资料分享平台

A全等三角形之手拉手模型倍长中线截长补短法

来源:用户分享 时间:2025/7/30 7:06:51 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

【阅读理解】

已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS) ∴∠AED=∠B=90°,DE=DB

又∵∠C=45°,∴△DEC是等腰直角三角形. ∴DE=EC.

∴AC=AE+EC=AB+BD. 【解决问题】

已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为 .

【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想. 【类比猜想】

任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.

如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC.

(1)求证:AM平分∠DAB

(2)试说明线段DM与AM有怎样的位置关系?

(3)线段CD、AB、AD间有怎样的关系?直接写出结果。

A全等三角形之手拉手模型倍长中线截长补短法.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9a4b81jbtg8n6j4879hw6x2111f20r00bd6_6.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top