矩形的性质与判定(二)
教学目标:
1.能够运用综合法和严密的数学语言证明矩形的性质和判定定理以及其他相关结论;
2.经历探索、猜测、证明的过程,发展学生的推理论证能力,培养学生找到解题思路的能力,使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用;
3.学生通过对比前面所学知识,体会证明过程中所运用的归纳、概括以及转化等数学思想方法;
4.通过学生独立完成证明的过程,让学生体会数学是严谨的科学,增强学生对待科学的严谨治学态度,从而养成良好的习惯。
教学过程
本节课设计了六个教学环节:第一环节:创设情境,提出问题;第二环节:先猜想再实践,发展几何直觉;第三环节:再创情境,猜想实践;第四环节:实际应用,范例教学;第五环节:反馈练习,注重参与;第六环节:课堂小结,布置作业。
第一环节:创设情境,提出问题
活动内容:课前准备小木板和橡皮筋,制作一个如图所示的平行四边形的活动框架。在一个平行四边形活动框架上,用两根橡皮筋分别套在两个相对的顶点上,拉动一对不相邻的顶点时,平行四边形的形状会发生什么变化?
活动目的:通过这个活动,首先是学生能够主动地对平行四边形的相关知识有一个系统的回顾和认知,让学生以一种比较有趣的形式对这部分知识进行自主的复习,激发学生对本节知识的学习兴趣。同时,对平行四边形进行归纳,可以使学生清楚地认识到平行四边形与特殊平行四边形之间的关系,为后面连续几节研究特殊的平行四边形提供有力的支持。此外,这个活动,也可以激发学生的积
极性和主动性。
活动的注意事项:因为前面对平行四边形及菱形、矩形的学习,学生回答问题比较有针对性,能概括地从“边、角、对角线”等几个方面回答,较有条理。当然也有个别学生语言表述不到位,需老师同学适时点拨、补充、鼓励。 第二环节:先猜想再实践,发展几何直觉
活动内容:根据上面的实践活动提出以下两个问题: (1) 随着??的变化,两条对角线将发生怎样的变化?
(2) 当两条对角线相等时,平行四边形有什么特征?由此你能得到一个怎
样的猜想?
学生在小组中完成这个活动的过程中,会引发对于这两个问题的讨论,请学生根据实践的结果对问题进行回答,再对比前面所学的平行四边形及菱形的判定定理的证明过程,来思考如何证明矩形的判定定理。然后通过小组合作,将定理的证明严格的完成,最后同学实物投影的形式,各小组之间进行交流。
对比前一节学习的菱形和矩形的性质定理,引导学生对矩形独有的第一个判定定理进行证明:
教师板书本题证明过程。
定理 两条对角线相等的平行四边形是矩形。
(1) 学生独立画出图形,在教师引导下写出已知、求证;
(2) 对比平行四边形和菱形的判定定理的证明,对已知、求证进行分析; (3) 请学生交流大体思路;
(4) 用规范的数学语言写出证明过程;
(5) 同学之间进行交流,找出自己还存在的问题。
活动目的:矩形的性质学生已经非常熟悉,对比矩形的性质得到矩形的判定,通过教师引导和独立思考,培养遇到题目时冷静思考,找到解题思路的良好习惯。在分析思路时,逐步锻炼学生的推理论证能力,最后通过互查的形式让每个学生都能严格的证明,培养严谨的作风。通过小组合作,在合作中让学生相互帮助共同进步。
活动注意事项:通过这个活动,学生能够很容易想出矩形的这个判定定理,而且通过对比平行四边形和菱形的相关证明,不难证明。所以,教师在这里可以
放手让学生通过分组的形式,自主证明,这样不仅有利于学生的合作交流,还能让学生多些时间来研究一题多解,开阔了学生的思路,让学生把精力投入到对思想方法的研究上去。
同时,采取小组合作时,应当鼓励学生提出自己的意见,特别是有没有更多的方法来证明这些定理,在小组讨论形成结果的时候,由代表为其他同学进行讲解,并把自己组所有想到的方法向大家展示。此时,教师应该关注学生的思路是否清晰、证明是否严谨,对学有余力的学生要关注他们是否有新的想法,对学困生则要关注他们是否掌握了基本的证明思路。
对学生的证明要求不高,但需要学生画图,并写出已知求证,这对部分学生来说有一定困难,教师在此时可以注意引导,让学生首先分析出定理中的条件和结论,然后让学生仿照前面平行四边形和菱形的证明,写出已知和求证,同时对他们做出分析,这个学生分析的环节是发展学生推理论证能力的关键。
在证明过程中,对于重点步骤,应该要求学生写明理由,同时,还要关注学生的证明过程是否严谨清晰。 第三环节:再创情境,猜想实践
活动内容:
教师给出PPT中的情境二:李芳同学用四步画出一个四边形,“边、直角、边----直角、边----直角、边”,她说这就是一个矩形,她说的对吗?为什么?
学生现猜想然后小组讨论,将讨论的结果进行证明。 定理 三个角是直角的四边形是矩形。
(1) 学生独立画出图形,在教师引导下写出已知、求证;
(2) 对比平行四边形和菱形的判定定理的证明,对已知、求证进行分析; (3) 请学生交流大体思路;
(4) 用规范的数学语言写出证明过程;
(5) 同学之间进行交流,找出自己还存在的问题。
活动目的:通过上面的一个判定定理的证明,学生已经学会如何分析命题,找出条件和结论,画出图形,根据图形写出已知和求证,到现在为止学生有两种证明一个四边形是矩形的方法,在这个环节中,应引导学生对方法的适当选择, 并通过实物投影的方式对比较严谨清晰的方法进行展示。
活动注意事项:通过这个活动,学生能够很容易想出矩形的这个判定定理,而且通过对比平行四边形和菱形的相关证明,不难证明。所以,教师在这里可以放手让学生通过分组的形式,自主证明,这样不仅有利于学生的合作交流,还能让学生多些时间来研究一题多解,开阔了学生的思路,让学生把精力投入到对思想方法的研究上去。
第四环节:实际应用,范例教学;
活动内容: 1. 教师实际问题:
①如果仅有一根足够长的绳子,如何判断一个四边形是平行四边形? ②如果仅有一根足够长的绳子,如何判断一个四边形是菱形? ③如果仅有一根足够长的绳子,如何判断一个四边形是矩形? 请说明如何操作,并说明这样做的原因。
2. 教师给出书中例二,学生进行分析,并解决这个问题,然后互相交流解法。
例:如图在□ABCD中,对角线AC和BD相较于点O,△ABO是等边三角形,
AB=4,求□ABCD的面积. ADOB教师板书本例题
活动目的:运用刚刚证明的两个定理解决实际问题,进一步发展学生的推理能力,将课本中的问题拆分成三个问题,发散学生思维,从而能将平行四边形菱形和矩形联系起来,分析三者之间的区别和联系。在活动2的证明中,通过让学生找寻不同的解题方法,培养学生的分析能力,深刻体会数学思想的多样性和灵活性。在一题多解的过程中,贯彻分层教学的理念,让学生在思维最活跃的时候,最大化地提高学生能力。
活动注意事项:在证明过程中,对于重点步骤,应该要求学生写明理由,同时,还要关注学生的证明过程是否严谨清晰。
C
相关推荐: