凡读书......须要读得字字响亮,不可误一字,不可少一字,不可多一字,不可倒一字,不可牵强暗记,只是要多诵数遍,自然上口,久远不忘。古人云,读书百遍,其义自见。谓读得熟,则不待解说,自晓其义也。余尝谓,读书有三到,谓心到,眼到,口到。
的温度变化情况,因此应当特别注意自变量的变化范围,这点往往被学生忽略掉
例2 2007全国高考 函数y=|sinx|的一个单调增区间是( )
A.(,) B.(,) C.(π,) D.(,2π)????3?3?3?
444422答案:C
例3 如图2,设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度,φ为该地的纬度值,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.
如果在北京地区(纬度数约为北纬40°)的一幢高为h0的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?
活动: 如图2本例所用地理知识、物理知识较多,综合性比较强,需调动相关学科的知识来帮助理解问题,这是本节的一个难点.在探讨时要让学生充分熟悉实际背景,理解各个量的含义以及它们之间的数量关系.
首先由题意要知道太阳高度角的定义:设地球表面某地纬度值为φ,正午太阳高度角为θ,此时太阳直射纬度为δ,那么这三个量之间的关系是θ=90°-|φ-δ|.当地夏半年δ取正值,冬半年δ取负值.
根据地理知识,能够被太阳直射到的地区为南、北回归线之间的地带,图形如图3,由画图易知
太阳高度角θ、楼高h0与此时楼房在地面的投影长h之间有如下关系: h0=htanθ.
由地理知识知,在北京地区,太阳直射北回归线时物体的影子最短,直
邴原少孤,数岁时,过书舍而泣。师曰:童子何泣?原曰:孤者易伤,贫者易感。夫书者,凡得学者,有亲也。一则愿其不孤,二则羡其得学,中心伤感,故泣耳。师恻然曰:欲书可耳!”原曰:无钱资。师曰:童子苟有志吾徒相教不求资也。
5 / 16
凡读书......须要读得字字响亮,不可误一字,不可少一字,不可多一字,不可倒一字,不可牵强暗记,只是要多诵数遍,自然上口,久远不忘。古人云,读书百遍,其义自见。谓读得熟,则不待解说,自晓其义也。余尝谓,读书有三到,谓心到,眼到,口到。
射南回归线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回归线时的情况.
图3
解:如图3,A、B、C分别为太阳直射北回归线、赤道、南回归线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度-23°26′.依题意两楼的间距应不小于MC.
根据太阳高度角的定义,
有∠C=90°-|40°-(-23°26′)|=26°34′, 所以MC==≈2.000h0,
h0h0 ?tanCtan2634' 即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距. 点评:本例是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的函数模型解决问题.要直接根据图2来建立函数模型,学生会有一定困难,而解决这一困难的关键是联系相关知识,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有一定的实际应用价值.教学中,教师可以在这道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究.
变式训练
某市的纬度是北纬23°,小王想在某住宅小区买房,该小区的楼高7层,每层3米,楼与楼之间相距15米.要使所买楼层在一年四季正午太阳不被前面的楼房遮挡,他应选择哪几层的房?
图4
邴原少孤,数岁时,过书舍而泣。师曰:童子何泣?原曰:孤者易伤,贫者易感。夫书者,凡得学者,有亲也。一则愿其不孤,二则羡其得学,中心伤感,故泣耳。师恻然曰:欲书可耳!”原曰:无钱资。师曰:童子苟有志吾徒相教不求资也。
6 / 16
凡读书......须要读得字字响亮,不可误一字,不可少一字,不可多一字,不可倒一字,不可牵强暗记,只是要多诵数遍,自然上口,久远不忘。古人云,读书百遍,其义自见。谓读得熟,则不待解说,自晓其义也。余尝谓,读书有三到,谓心到,眼到,口到。
解:如图4,由例3知,北楼被南楼遮挡的高度为
h=15tan[90°-(23°+23°26′)]=15tan43°34′≈14.26, 由于每层楼高为3米,根据以上数据, 所以他应选3层以上. 四、课堂小结
1.本节课学习了三个层次的三角函数模型的应用,即根据图象建立解析式,根据解析式作出图象,将实际问题抽象为与三角函数有关的简单函数模型.你能概括出建立三角函数模型解决实际问题的基本步骤吗?
2.实际问题的背景往往比较复杂,而且需要综合应用多学科的知识才能解决它.因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题.
五、作业
1.图5表示的是电流I与时间t的函数关系
图5
I=Asin(ωx+φ)(ω>0,|φ|<)在一个周期内的图象.(1)根据图象写出I=Asin(ωx+φ)的解析式;
(2)为了使I=Asin(ωx+φ)中的t在任意一段s的时间内电流I能同时取得最大值和最小值,那么正整数ω的最小值为多少?
1 10011
300150? 2解:(1)由图知A=300,第一个零点为(-,0),第二个零点为(,0),
∴ω·(-)+φ=0,ω·+φ=π.解得ω=100π,φ=,∴I=300sin(100πt+).
11??
3001503312?1
100?100(2)依题意有T≤,即≤,∴ω≥200π.故ωmin=629.
2.搜集、归纳、分类现实生活中周期变化的情境模型.
邴原少孤,数岁时,过书舍而泣。师曰:童子何泣?原曰:孤者易伤,贫者易感。夫书者,凡得学者,有亲也。一则愿其不孤,二则羡其得学,中心伤感,故泣耳。师恻然曰:欲书可耳!”原曰:无钱资。师曰:童子苟有志吾徒相教不求资也。
7 / 16
凡读书......须要读得字字响亮,不可误一字,不可少一字,不可多一字,不可倒一字,不可牵强暗记,只是要多诵数遍,自然上口,久远不忘。古人云,读书百遍,其义自见。谓读得熟,则不待解说,自晓其义也。余尝谓,读书有三到,谓心到,眼到,口到。
解:如以下两例:
①人体内部的周期性节律变化和个人的习惯性的生理变化,如人体脉搏、呼吸、排泄、体温、睡眠节奏、饥饿程度等;
②蜕皮(tuipi)昆虫纲和甲壳纲等节肢动物,以及线形动物等的体表具有坚硬的几丁质层,虽有保护身体的作用,但限制动物的生长、发育.因此,在胚后发育过程中,必须进行1次或数次脱去旧表皮,再长出宽大的新表皮后,才变成成虫,这种现象称为蜕皮;蜕下的“旧表皮”称为“蜕”,只有这样,虫体才能得以继续充分生长、发育.蜕皮现象的发生具有周期性,但蜕皮的准备和蜕皮过程是连续进行的.此外,脊椎动物爬行类的蜕皮现象尤为明显,如蜥蜴和蛇具有双层角质层,其外层在定期蜕皮时脱掉,蛇的外层角质层连同眼球外面透明的皮肤,约每2个月为一个周期可完整地脱落1次,称为蛇蜕.
三角函数模型的简单应用(二)
一、导入新课
思路1.通过展示上节作业引入,学生搜集、归纳到的现实生活中的周期现象有:物理情景的①简单和谐运动,②星体的环绕运动;地理情景的①气温变化规律,②月圆与月缺;心理、生理现象的①情绪的波动,②智力变化状况,③体力变化状况;日常生活现象的①涨潮与退潮,②股票变化等等.
思路2.(复习导入)回忆上节课三角函数模型的简单应用例子,这节课我们继续探究三角函数模型在日常生活中的一些简单应用.
二、推进新课、新知探究、提出问题
①本章章头引言告诉我们,海水在月球和太阳引力作用下发生周期性涨落现象.回忆上节课的内容,怎样用上节课的方法从数学的角度来定量地解决这个问题呢?在指数、对数模型中是怎样处理搜集到的数据的?
邴原少孤,数岁时,过书舍而泣。师曰:童子何泣?原曰:孤者易伤,贫者易感。夫书者,凡得学者,有亲也。一则愿其不孤,二则羡其得学,中心伤感,故泣耳。师恻然曰:欲书可耳!”原曰:无钱资。师曰:童子苟有志吾徒相教不求资也。
8 / 16
相关推荐: