231
的前n项和等于,则n等于( )
32
A.4 C.6
B.5 D.7
55151-1
解析:由f(1)+f(-1)=,得a+a=,即a+=.解得a=2(舍去)或a=,则数
22a22
11
列{f(n)}是首项为a1=,公比q=的等比数列,所以Sn=
22
?1?1-?2?a1(1-qn)1??
1-q=×
2
n?1?=1-??
1?2?1-2
n1?1?31?1?,由1-??=得??=,解得n=5,故选B.
?2?32?2?32答案:B
5.在数列{an}中,an=n,n∈N,前50个偶数的平方和与前50个奇数的平方和的差是
*
nn( )
A.0 C.2 525
2
2
2
2
2
2
B.5 050 D.-5 050
2
2
2
2
2
2
解析:(2+4+…+100)-(1+3+…+99)=(2-1)+(4-3)+…+(100-99)50×(3+199)
=3+7+11+…+195+199==5 050.
2
答案:B
6.数列{an}满足an+1+(-1)an=2n-1,则数列{an}的前60项和为( ) A.3 690 C.1 845
B.3 660 D.1 830
n解析:当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1
=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,即a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)
+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)=830.
答案:D 二、填空题
7.已知数列{an}的通项公式为an=(-1)
n+1
30×(3+119)
=30×61=1
2
(3n-2),则前100项和S100等于________.
解析:∵a1+a2=a3+a4=a5+a6=…=a99+a100=-3,∴S100=-3×50=-150. 答案:-150
?1?1+2+3+…+n?的前n项和为________. 8.已知数列{an}满足an=,则数列?
n?anan+1?
1+2+3+…+nn+1
解析:an==,
n21
anan+1
=4?1-1?,
=4??(n+1)(n+2)?n+1n+2?
所求的前n项和为
11??1111-4?-+-+…+ n+1n+2??2334?1?2n?1
=4?-. ?=
?2n+2?n+2答案:
2n n+2
*
9.设数列{an}的通项公式为an=2n-10(n∈N),则|a1|+|a2|+…+|a15|=________. 解析:由an=2n-10(n∈N)知{an}是以-8为首项,2为公差的等差数列,又由an=2n-10≥0得n≥5,所以当n<5时,an<0,当n≥5时,an≥0,所以|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4)+(a5+a6+…+a15)=20+110=130.
答案:130
1?11?1+1?,?1+1+1+…+n10.(2016·郑州模拟)若数列{an}是1,…,…,-1?,?2?(1+2+4),?24
2????则数列{an}的前n项和Sn=________.
*
111
解析:an=1+++…+n-1=
242
?1?1-???2?
n?1?=2?1-n?, 1?2?1-
2
??1??1??1??所以Sn=2??1-?+?1-2?+…+?1-n?? ??2??2??2???(1+1+…+1)?111??
=2?n个-?+2+…+n??)
2???22?
1?1?1-?2n?2????1??=2n-=2?n-?1-n?? 1??2??1-2
??????
1
=2n-2+n-1. 21
答案:2n-2+n-1
2三、解答题
11.在各项均为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列. (1)求等比数列{an}的通项公式;
?1?
(2)若数列{bn}满足bn=(n+2)log2an,求数列??的前n项和Tn.
?bn?
解:(1)设数列{an}的公比为q, ∵2a1,a3,3a2成等差数列, ∴2a1+3a2=2a3, 2a1+3a1q=2a1q,
12
2q-3q-2=0,解得q=2或q=-. 2∵q>0,∴q=2.
∵a1=2,∴数列{an}的通项公式为an=a1q(2)∵bn=(n+2)log2an=n(n+2), 1∴=
n-1
2
=2.
nbn1?11?1
=?-?,
n(n+2)2?nn+2?1
1
1
Tn=++…++
b1b2bn-1bn1?1??11??11??1-1?+?1-1?+?1-1?]=1=[?1-?+?-?+?-?+…+??????2?3??24??35?2?n-2n??n-1n+1??nn+2?2n+3?1+1-1-1?=3-?2n+1n+2?42(n2+3n+2). ??
12.(2015·山东卷)设数列{an}的前n项和为Sn,已知2Sn=3+3. (1)求{an}的通项公式;
(2)若数列{bn}满足anbn=log32,求{bn}的前n项和Tn. 解:(1)因为2Sn=3+3, 所以2a1=3+3,故a1=3, 当n>1时,2Sn-1=3
n-1nn1
+3,
nn-1
此时2an=2Sn-2Sn-1=3-3=2×3
n-1
,