即an=3
n-1
??3,n=1,
,所以an=?n-1
?3,n>1.?
1
(2)因为anbn=log3an,所以b1=,
3当n>1时,bn=3
1-nlog33
n-1
=(n-1)·3
1-n,
1
所以T1=b1=;
3
1-1-21-n当n>1时,Tn=b1+b2+b3+…+bn=+[1×3+2×3+…+(n-1)×3],
3所以,3Tn=1+[1×3+2×3+…+(n-1)×3两式相减,得
20-1-22-n1-n2Tn=+(3+3+3+…+3)-(n-1)×3
321-3136n+31-n=+=--1-(n-1)×3n, 31-362×3136n+3所以Tn=-n.
124×3经检验,n=1时也适合. 136n+3
综上可得Tn=-n.
124×3
1-n0
-1
2-n],
1111+2+2+…+的值为( ) 2
2-13-14-1(n+1)-1
2
1.A.
n+1
2(n+2)
3n+1B.- 42(n+2)1?31?1+C.-??
42?n+1n+2?1?31?1-D.-??
42?n+1n+2?
111
解析:∵=2= 2
(n+1)-1n+2nn(n+2)1?1?1
=?-?, 2?nn+2?∴
1111+2+2+…+ 2
2-13-14-1(n+1)-1
2
11?1?11111
=?1-+-+-+…+-
32435nn+2?2??11?1?3
-=?-?
2?2n+1n+2?1?31?1+=-??.
42?n+1n+2?答案:C 2.定义
np1+p2+…+pn为n个正数p1,p2,…,pn的“均倒数”.若已知正项数列{an}
的前n项的“均倒数”为
A.C.1 1110 11
1an+1111,又bn=,则++…+=( ) 2n+14b1b2b2b3b10b11
B.1
12
11D. 12
12
=,即Sn=n(2n+1)=2n+n,当n=1时,a1=S1
a1+a2+…+an2n+1
解析:依题意有
n=3;当n≥2时,an=Sn-Sn-1=4n-1,a1=3满足该式.则an=4n-1,bn=1=
an+1
4
=n.因为
bnbn+1
1111111111110
=-,所以++…+=1-+-+…+-=.
n(n+1)nn+1b1b2b2b3b10b11223101111
答案:C
??1?11??11??是等差数列,3.设数列{an}是首项为1的等比数列,若?则?+?+?+??2a1a2??2a2a3??2an+an+1?
+…+?
?1+1?的值等于( )
??2a2 012a2 013?
B.2 013 D.3 019
A.2 012 C.3 018
??1112
?是等差数列,解析:设数列{an}的公比为q,若?则由+=,
2a1+a22a3+a42a2+a3?2an+an+1?
得
112113?11??11?+2+=,故?+?+?+?3=2,解得q=1,则an=1,从而2+q2q+q2q+q2anan+12?2a1a2??2a2a3?
+…+?
?1+1?=2 012×3=3 018.
?2?2a2 012a2 013?
*
答案:C
4.(2016·韶关模拟)已知数列{an}的首项a1=1,前n项和为Sn,an+1=2Sn+1,n∈N. (1)求数列{an}的通项公式;
?bn?9
(2)设bn=log3an+1,求数列??的前n项和Tn,并证明:1≤Tn<.
4?an?
解:(1)由an+1=2Sn+1, 得an=2Sn-1+1(n≥2),
两式相减得an+1-an=2(Sn-Sn-1)=2an, 故an+1=3an(n≥2),
所以当n≥2时,{an}是以3 为公比的等比数列. 因为a2=2S1+1=2a1+1=3,=3,
所以{an}是首项为1,公比为3的等比数列,an=3(2)证明:由(1)知an=3
n-1
n-1
a2
a1
.
,故bn=log3an+1=log33=n,
n1?n-1bnn?==n·??,
an3n-1?3?
1?21?31?n-11???Tn=1+2×+3×??+4×??+…+n×??,①
3?3??3??3?
1?21?31?n-11?n11????Tn=1×+2×??+3×??+…+(n-1)×??+n×??.②
33?3??3??3??3?
?1?1-?3?1?n-11?n1?n21?1?2?1?3?????①-②,得Tn=1++??+??+…+??-n×??=-n×??,
33?3?1?3??3??3??3?
1-3
9?93??1?n所以Tn=-?+n???.
4?42??3?
n?93??1?因为?+n???>0, ?42??3?
9?93??1?n9
所以Tn=-?+n???<.
4?42??3?4又因为Tn+1-Tn=
nn+1
3
n>0,
所以数列{Tn}单调递增, 所以(Tn)min=T1=1, 9
所以1≤Tn<. 4
相关推荐: