(三)数 列
1.(2019·宁波中学模拟)设数列{an}的前n项和为Sn,对于任意n∈N满足:an>0,且an是*
4S2
n和3-an的等差中项. (1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,都有1111
a2+2+…+2<. 1a2an4(1)解 ∵a2
n是4Sn和3-an的等差中项, ∴2a2
n=4Sn+3-an, 对于上式,令n=1,
则2a21=4a1+3-a1?a1=3或a1=-1, 又an>0,∴a1=3.
(2)解 易知,4S2n=an+2an-3,① 4S2
*
n+1=an+1+2an+1-3,n∈N,② 上述两式作差并化简得 2(a2
2
n+1+an)=an+1-an,
即2(an+1+an)=(an+1+an)(an+1-an), 又an>0,所以an+1-an=2,n∈N*
, 即数列{an}为等差数列,公差为2, 由a1=3,可知an=a1+2(n-1)=2n+1, 即数列{a*
n}的通项公式为an=2n+1,n∈N. (3)证明
1
1a2
=+1?=11
24n2
+4n+1<4n2+4n n?2n=1?4?1
1?n-n+1???, 即111a2
?n-n?+1??, 于是11a+12a2+…+2
12an<1??11??11??1
1??4????1-2??+??2-3??+…+??n-n+1???? =1?4??1-1n+1???<14,
即对一切正整数n,都有
1
1
a2+1a2+…+12a2<1. 1n4
2.已知数列{a*
n}满足a1=2,an+1=2(Sn+n+1)(n∈N),令bn=an+1. (1)求证:{bn}是等比数列;
相关推荐: