第一范文网 - 专业文章范例文档资料分享平台

多层聚簇中基于协同过滤的跨类推荐算法

来源:用户分享 时间:2025/11/26 2:06:31 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

多层聚簇中基于协同过滤的跨类推荐算法

李瑞远;洪亮;曾承

【期刊名称】《小型微型计算机系统》 【年(卷),期】2017(038)004

【摘要】Most electronic commerce (E-commerce ) systems use Collaborative Filtering (CF)-based methods to recommend items belonging to different categories.Market basket analysis has found that a group of like-minded users have similar tastes on items belonging to a subset of correlated categories(called cross-category dependence) rather than all the categories.Therefore,we should consider both user-to-user similarity and item-to-item similarity in recommendations.In real applications,items are usually organized into a multi-level taxonomy which provides hierarchical relationships between items and categories.Note that,the degree of data sparsity varies in different level of categories as there are more items in a category than those in any of its sub-categories.To alleviate the data sparsity problem of existing recommendation

methods,we

propose

an

efficient

multi-level

biclustering algorithm to mine user-iterr/category biclusters (i.e.cross-category dependence ) at each level of the taxonomy.Then we propose a general framework for cross-category recommendation which extends existing CF methods by utilizing multi-level biclusters to improve their recommendation performance.Experiments on a real datasets show that

多层聚簇中基于协同过滤的跨类推荐算法.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9k1r81xyf87916095eiv3gyk618jli007xd_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top