È˽̰æ¾ÅÄê¼¶ÊýѧÉϲá֪ʶµã×Ü½á µÚ22Õ ¶þ´Îº¯Êý֪ʶµã¹éÄɼ°Ïà¹ØµäÐÍÌâ
µÚÒ»²¿·Ö »ù´¡ÖªÊ¶
1.¶¨Ò壺һ°ãµØ£¬Èç¹ûy?ax?bx?c(a,b,cÊdz£Êý£¬a?0)£¬ÄÇôy½Ð×öxµÄ¶þ´Îº¯Êý.
22.¶þ´Îº¯Êýy?axµÄÐÔÖÊ
£¨1£©Å×ÎïÏßy?axµÄ¶¥µãÊÇ×ø±êԵ㣬¶Ô³ÆÖáÊÇyÖá. £¨2£©º¯Êýy?axµÄͼÏñÓëaµÄ·ûºÅ¹ØÏµ.
¢Ùµ±a?0ʱ?Å×ÎïÏß¿ª¿ÚÏòÉÏ?¶¥µãΪÆä×îµÍµã£»
¢Úµ±a?0ʱ?Å×ÎïÏß¿ª¿ÚÏòÏÂ?¶¥µãΪÆä×î¸ßµã.
£¨3£©¶¥µãÊÇ×ø±êԵ㣬¶Ô³ÆÖáÊÇyÖáµÄÅ×ÎïÏߵĽâÎöʽÐÎʽΪy?ax£¨a?0£©.
22223.¶þ´Îº¯Êý y?ax?bx?cµÄͼÏñÊǶԳÆÖáÆ½ÐÐÓÚ£¨°üÀ¨Öغϣ©yÖáµÄÅ×ÎïÏß.
24.¶þ´Îº¯Êýy?ax?bx?cÓÃÅä·½·¨¿É»¯³É£º
2y?a?x?h?2b4ac?b2?kµÄÐÎʽ£¬ÆäÖÐh??£¬k?.
2a4a5. ¶þ´Îº¯ÊýÓÉÌØÊâµ½Ò»°ã£¬¿É·ÖΪÒÔϼ¸ÖÖÐÎʽ£º ¢Ùy?ax22£»¢Úy?ax?k£»¢Ûy?a?x?h?2£»¢Üy?a?x?h??k£»¢Ý
2y?ax2?bx?c.
6.Å×ÎïÏßµÄÈýÒªËØ£º¿ª¿Ú·½Ïò¡¢¶Ô³ÆÖá¡¢¶¥µã.
¢ÙaµÄ·ûºÅ¾ö¶¨Å×ÎïÏߵĿª¿Ú·½Ïò£ºµ±a?0ʱ£¬¿ª¿ÚÏòÉÏ£»µ±a?0ʱ£¬¿ª¿ÚÏòÏ£»
aÔ½´ó£¬Å×ÎïÏߵĿª¿ÚԽС£»aԽС£¬Å×ÎïÏߵĿª¿ÚÔ½´ó¡£
¢ÚƽÐÐÓÚyÖᣨ»òÖØºÏ£©µÄÖ±Ïß¼Ç×÷x?h.ÌØ±ðµØ£¬yÖá¼Ç×÷Ö±Ïßx?0.
7.¶¥µã¾ö¶¨Å×ÎïÏßµÄλÖÃ.¼¸¸ö²»Í¬µÄ¶þ´Îº¯Êý£¬Èç¹û¶þ´ÎÏîϵÊýaÏàͬ£¬ÄÇôÅ×ÎïÏߵĿª¿Ú·½Ïò¡¢¿ª¿Ú´óСÍêÈ«Ïàͬ£¬Ö»ÊǶ¥µãµÄλÖò»Í¬.
8.ÇóÅ×ÎïÏߵĶ¥µã¡¢¶Ô³ÆÖáµÄ·½·¨
b?4ac?b2?2 £¨1£©¹«Ê½·¨£ºy?ax?bx?c?a?x?£¬ ??2a4a??b4ac?b2b£¨?£¬£©¡à¶¥µãÊÇ£¬¶Ô³ÆÖáÊÇÖ±Ïßx??.
2a4a2a £¨2£©Åä·½·¨£ºÔËÓÃÅä·½µÄ·½·¨£¬½«Å×ÎïÏߵĽâÎöʽ»¯Îªy?a?x?h??kµÄÐÎʽ£¬µÃµ½
22¶¥µãΪ(h,k)£¬¶Ô³ÆÖáÊÇÖ±Ïßx?h.
£¨3£©Å×ÎïÏߵĶԳÆÐÔ£ºÓÉÓÚÅ×ÎïÏßÊÇÒÔ¶Ô³ÆÖáΪÖáµÄÖá¶Ô³ÆÍ¼ÐΣ¬ËùÒԶԳƵãµÄÁ¬ÏßµÄ
´¹Ö±Æ½·ÖÏßÊÇÅ×ÎïÏߵĶԳÆÖᣬ¶Ô³ÆÖáÓëÅ×ÎïÏߵĽ»µãÊǶ¥µã.
ÓÃÅä·½·¨ÇóµÃµÄ¶¥µã£¬ÔÙÓù«Ê½·¨»ò¶Ô³ÆÐÔ½øÐÐÑéÖ¤£¬²ÅÄÜ×öµ½ÍòÎÞһʧ. 9.Å×ÎïÏßy?ax?bx?cÖУ¬a,b,cµÄ×÷ÓÃ
2 £¨1£©a¾ö¶¨¿ª¿Ú·½Ïò¼°¿ª¿Ú´óС£¬ÕâÓëy?axÖеÄaÍêȫһÑù.
2 £¨2£©bºÍa¹²Í¬¾ö¶¨Å×ÎïÏß¶Ô³ÆÖáµÄλÖÃ.ÓÉÓÚÅ×ÎïÏßy?ax?bx?cµÄ¶Ô³ÆÖáÊÇÖ±Ïß
2bb£¬¹Ê£º¢Ùb?0ʱ£¬¶Ô³ÆÖáΪyÖ᣻¢Ú?0£¨¼´a¡¢bͬºÅ£©Ê±£¬¶Ô³ÆÖá2aabÔÚyÖá×ó²à£»¢Û?0£¨¼´a¡¢bÒìºÅ£©Ê±£¬¶Ô³ÆÖáÔÚyÖáÓҲ࣬¡°×óͬÓÒÒ족.
ax?? £¨3£©cµÄ´óС¾ö¶¨Å×ÎïÏßy?ax?bx?cÓëyÖá½»µãµÄλÖÃ.
2 µ±x?0ʱ£¬y?c£¬¡àÅ×ÎïÏßy?ax?bx?cÓëyÖáÓÐÇÒÖ»ÓÐÒ»¸ö½»µã£¨0£¬c£©£º
2 ¢Ùc?0£¬Å×ÎïÏß¾¹ýÔµã; ¢Úc?0,ÓëyÖá½»ÓÚÕý°ëÖ᣻¢Ûc?0,ÓëyÖá½»ÓÚ¸º°ëÖá. 10.¼¸ÖÖÌØÊâµÄ¶þ´Îº¯ÊýµÄͼÏñÌØÕ÷ÈçÏ£º º¯Êý½âÎöʽ ¿ª¿Ú·½Ïò µ±a?0ʱ ¿ª¿ÚÏòÉÏ µ±a?0ʱ ¶Ô³ÆÖá ¶¥µã×ø±ê £¨0,0£© (0, k) (h,0) y?ax2 y?ax2?k y?a?x?h? 2x?0£¨yÖᣩ x?0£¨yÖᣩ x?h y?a?x?h??k 2¿ª¿ÚÏòÏ x?h x??b 2a(h,k) y?ax2?bx?c b4ac?b2£¬(?) 2a4a11.Óôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ
£¨1£©Ò»°ãʽ£ºy?ax?bx?c.ÒÑ֪ͼÏñÉÏÈýµã»òÈý¶Ôx¡¢yµÄÖµ£¬Í¨³£Ñ¡ÔñÒ»°ãʽ.
2 £¨2£©¶¥µãʽ£ºy?a?x?h??k.ÒÑ֪ͼÏñµÄ¶¥µã»ò¶Ô³ÆÖᣬͨ³£Ñ¡Ôñ¶¥µãʽ.
2 £¨3£©½»µãʽ£ºÒÑ֪ͼÏñÓëxÖáµÄ½»µã×ø±êx1¡¢x2£¬Í¨³£Ñ¡Óý»µãʽ£ºy?a?x?x1??x?x2?. 12.Ö±ÏßÓëÅ×ÎïÏߵĽ»µã
2 £¨1£©yÖáÓëÅ×ÎïÏßy?ax?bx?cµÃ½»µãΪ(0, c).
£¨2£©ÓëyÖáÆ½ÐеÄÖ±Ïßx?hÓëÅ×ÎïÏßy?ax?bx?cÓÐÇÒÖ»ÓÐÒ»¸ö½»µã
2(h,ah2?bh?c).
£¨3£©Å×ÎïÏßÓëxÖáµÄ½»µã
¶þ´Îº¯Êýy?ax?bx?cµÄͼÏñÓëxÖáµÄÁ½¸ö½»µãµÄºá×ø±êx1¡¢x2£¬ÊǶÔÓ¦Ò»Ôª
2¶þ´Î·½³Ìax?bx?c?0µÄÁ½¸öʵÊý¸ù.Å×ÎïÏßÓëxÖáµÄ½»µãÇé¿ö¿ÉÒÔÓɶÔÓ¦µÄÒ»
2Ôª¶þ´Î·½³ÌµÄ¸ùµÄÅбðʽÅж¨£º
¢ÙÓÐÁ½¸ö½»µã???0?Å×ÎïÏßÓëxÖáÏཻ£»
¢ÚÓÐÒ»¸ö½»µã£¨¶¥µãÔÚxÖáÉÏ£©???0?Å×ÎïÏßÓëxÖáÏàÇУ» ¢ÛûÓн»µã???0?Å×ÎïÏßÓëxÖáÏàÀë. £¨4£©Æ½ÐÐÓÚxÖáµÄÖ±ÏßÓëÅ×ÎïÏߵĽ»µã
ͬ£¨3£©Ò»Ñù¿ÉÄÜÓÐ0¸ö½»µã¡¢1¸ö½»µã¡¢2¸ö½»µã.µ±ÓÐ2¸ö½»µãʱ£¬Á½½»µãµÄ×Ý×ø
±êÏàµÈ£¬Éè×Ý×ø±êΪk£¬Ôòºá×ø±êÊÇax?bx?c?kµÄÁ½¸öʵÊý¸ù.
2 £¨5£©Ò»´Îº¯Êýy?kx?n?k?0?µÄͼÏñlÓë¶þ´Îº¯Êýy?ax?bx?c?a?0?µÄͼÏñG2µÄ½»µã£¬ÓÉ·½³Ì×é
y?kx?ny?ax2?bx?cµÄ½âµÄÊýÄ¿À´È·¶¨£º¢Ù·½³Ì×éÓÐÁ½×鲻ͬµÄ½â
ʱ?lÓëGÓÐÁ½¸ö½»µã; ¢Ú·½³Ì×éÖ»ÓÐÒ»×é½âʱ?lÓëGÖ»ÓÐÒ»¸ö½»µã£»¢Û·½³Ì×éÎÞ½âʱ?lÓëGûÓн»µã.
£¨6£©Å×ÎïÏßÓëxÖáÁ½½»µãÖ®¼äµÄ¾àÀ룺ÈôÅ×ÎïÏßy?ax?bx?cÓëxÖáÁ½½»µãΪ
2A?x1£¬0?£¬B?x2£¬0?£¬ÓÉÓÚx1¡¢x2ÊÇ·½³Ìax2?bx?c?0µÄÁ½¸ö¸ù£¬¹Ê
bcx1?x2??,x1?x2?aaAB?x1?x2? Öп¼»Ø¹Ë
?x1?x2?2??x1?x2?24cb2?4ac??b??4x1x2???????aaa?a?21.(2017Ìì½òÖп¼)ÒÑÖªÅ×ÎïÏßy=x2-4x+3ÓëxÖáÏཻÓÚµãA,B(µãAÔÚµãB×ó²à),¶¥µãΪ
M.Æ½ÒÆ¸ÃÅ×ÎïÏß,ʹµãMÆ½ÒÆºóµÄ¶ÔÓ¦µãM'ÂäÔÚxÖáÉÏ,µãBÆ½ÒÆºóµÄ¶ÔÓ¦µãB'ÂäÔÚyÖáÉÏ,
ÔòÆ½ÒÆºóµÄÅ×ÎïÏß½âÎöʽΪ( A ) A.y=x2+2x+1
B.y=x2+2x-1 C.y=x2-2x+1 D.y=x2-2x-1
2.(2017ËÄ´¨³É¶¼Öп¼)ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖÐ,¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÈçͼËùʾ,ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ( B )
A. abc<0, b2-4ac>0 B. abc>0, b2-4ac>0 C. abc<0, b2-4ac<0 D. abc>0, b2-4ac<0
3.(2017ÄÚÃɹųà·åÖп¼)Èç¹û¹ØÓÚxµÄ·½³Ìx2-4x+2m=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù,ÄÇômµÄȡֵ·¶Î§ÊÇ m<2 .
4.(2017ÄÚÃɹųà·åÖп¼)Èçͼ,¶þ´Îº¯Êýy=ax2+bx+c(a¡Ù0)µÄͼÏó½»xÖáÓÚA,BÁ½µã,½»yÖáÓÚµãD,µãBµÄ×ø±êΪ(3,0),¶¥µãCµÄ×ø±êΪ(1,4).
±¸ÓÃͼ
(1)Çó¶þ´Îº¯ÊýµÄ½âÎöʽºÍÖ±ÏßBDµÄ½âÎöʽ;
(2)µãPÊÇÖ±ÏßBDÉϵÄÒ»¸ö¶¯µã,¹ýµãP×÷xÖáµÄ´¹Ïß,½»Å×ÎïÏßÓÚµãM,µ±µãPÔÚµÚÒ»ÏóÏÞʱ,ÇóÏß¶ÎPM³¤¶ÈµÄ×î´óÖµ;
(3)ÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚÒìÓÚB,DµÄµãQ,ʹ¡÷BDQÖÐBD±ßÉϵĸßΪ2µÄ×ø±ê;Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ.
½â:(1)Éè¶þ´Îº¯ÊýµÄ½âÎöʽΪy=a(x-1)2+4.
,Èô´æÔÚÇó³öµãQ¡ßµãB(3,0)Ôڸöþ´Îº¯ÊýµÄͼÏóÉÏ, ¡à0=a(3-1)2+4,½âµÃ:a=-1.
¡à¶þ´Îº¯ÊýµÄ½âÎöʽΪy=-x2+2x+3. ¡ßµãDÔÚyÖáÉÏ,ËùÒÔ¿ÉÁîx=0,½âµÃ:y=3. ¡àµãDµÄ×ø±êΪ(0,3).
ÉèÖ±ÏßBDµÄ½âÎöʽΪy=kx+3,°Ñ(3,0)´úÈëµÃ3k+3=0,½âµÃ:k=-1.
¡àÖ±ÏßBDµÄ½âÎöʽΪy=-x+3.
£¨2£©ÉèµãPµÄºá×ø±êΪm(m>0), ÔòP(m,-m+3), M(m,-m2+2m+3),
PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM×î´óֵΪ
(3)Èçͼ,¹ýµãQ×÷QG¡ÎyÖá½»BDÓÚµãG,×÷QH¡ÍBDÓÚµãH,ÔòQH=2
Ïà¹ØÍÆ¼ö£º