8. (2012湖北恩施3分)如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是【 】
A.3 B.2 C.3 D.2 【题型】几何类面积问题计算。
【考点】 ; 【方法】 。 9. (2012湖北咸宁3分)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为【 】.
A. B. C.
D.
【题型】几何类识图问题判断。
【考点】 ; 【方法】 。
10. (2012湖北黄冈3分)如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P 从
点A 出发,沿AB方向以每秒2cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm 的速度向终点C 运动,将△PQC沿BC翻折,点P
的对应点为点P′.设Q点运动的时间t秒,若四边形QPCP′为菱形,则t的值为【 】 A. 2 B. 2 C. 22 D. 4 【题型】几何类动态问题计算。
【考点】 ; 【方法】 。
11. (2012湖北十堰3分)如图,O是正△ABC内一点,OA=3,
OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO=6+33;
⑤S?AOC?S?AOB?6+934.其中正确的结论是【 】
A.①②③⑤ B.①②③④ C.①②③④⑤ D.①②③ 【题型】几何类间接多选题。
【考点】 ; 【方法】 。
12. (2012湖北孝感3分)如图,在菱形ABCD中,∠A=60o,E、F
分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有【 】 ①∠BGD=120o;②BG+DG=CG;③△BDF≌△CGB;④S?ADE=342AB.
A.1个 B.2个 C.3个 D.4个 【题型】几何类间接多选题。
【【考点】 ; 【方法】 。 13. (2012湖南岳阳3分)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD=DE?CD;②AD+BC=CD;
2
③OD=OC;④S梯形ABCD=CD?OA;⑤∠DOC=90°,其中正确的是( )
A . ①②⑤ B. ②③④ C.③④⑤ D. ①④⑤
【题型】几何类间接多选题。
【考点】 ; 【方法】 。 14. (2012山东东营3分) 如图,一次函数y?x?3的图象与x轴,y轴交于A,B两点,与反
比例函数y?4x的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,
y D 连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等; ③△DCE≌△CDF; 其中正确的结论是( )
A.①② B. ①②③ C.①②③④ D. ②③④
【题型】坐标几何类间接多选题。
②△AOB∽△FOE; ④AC?BDB A O E C .
F x (第13题图=原题12题) 【考点】 ; 【方法】 。
115. (2012湖北黄石3分)如图所示,已知A(,y1),B(2,y2)为
2反比例函数y?1x图像上的两点,动点P(x,0)在x正半轴上运
动,当线段AP与线段BP之差达到最大时,点P的坐标是【 】 A. (,0) B. (1,0) C. (,0) D. (,0)
222135【题型】坐标几何类计算题。 【
考
y??nn?1x?2n?1SnS1?S2?S3????????S2011?点】 ; 【方法】 。 16. (2012浙江湖州3分)如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于【 】 A.5 B.435 C.3 D.4
【题型】坐标几何类动态问题计算题。
【考点】 ; 【方法】 。 17. (2012山东省威海3分)已知:直线(n为正整数)与
两坐标轴围成的三角形面积为 , 则 【题型】坐标几何类规律探究计算题。
【考点】 ; 【方法】 。
18. (2012湖北鄂州3分)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,???按这样的规律进行下去,第2012个正方形的面积为【 】
3A.5?()2010
29B.5?()2010
43D.5?()4022
29B. C.5?()2012
4【题型】坐标几何类规律探究计算题。
【考点】 ; 【方法】 。
19(2012广西柳州3分)小兰画了一个函
数的图象如图,那么关于x的分式方程
的解是( )A.x=1 B.x=2 C.x=3 D.x=4
【题型】坐标几何类图像信息题。
【考点】 ; 【方法】 。 20(2012浙江宁波3分)勾股定理是几何中的一个重要定理。在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。图2是由图1放入矩形内得到的,∠BAC=90O,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为 ( )
A、 90 B、 100 C、 110 D、 121 【题型】几何图形信息题。
【考点】 ; 【方法】 。 21.(2010湖北十堰3分)如图,点C、D是以线段AB为公共弦的两条圆弧的中点,AB=4,点E、F分别是线段CD,AB上的动点,设AF=x,AE-FE=y,则能表示y与x的函数关系的图象是( )
C y y y y E 4 4 4 4 D A
【题型】几何图形图像信息题。
F (第10题) B O A. 4 x O B. 4 x O C. 4 x O D. 4 x 2
2
相关推荐: