1111???∴, ann?n?1?n?1n∴
111?1??11?1?1n?1?1??L???1???????L?????1??,故选A. a2a3an?2??23?nn?n?1n?n?1?10.已知数列?an?的首项a1?1,且满足an?1?an?????n?N??,如果存在正整数n,
?2?使得?an????an?1????0成立,则实数?的取值范围是( ) ?1?2? A.?,?2??2?1? B.?,?3??1?1? C.?,?2??25?D.?,?
?36?【答案】C
【解析】由题意n?2时,
?1??1??1?an?a1??a2?a1???a3?a2??L??an?an?1??1?????????L?????2??2??2?2n?12??1???1????3???2?n????,
由?an????an?1????0,即???an????an?1??0, 2??1??a?a???aa???a?1????∴2k2k?1且2k2k?1,k?N,2k3???2?2k?2?1????1?2k?, ??3?2?2k?12?3?12??1??2?1?其中最小项为a2??1???,a2k?1??1???????1?2k?1?,
3?4?23????2???3?2其中最大项为a1?1,因此
1???1.故选C. 2n*11.已知数列?an?满足a1?1,an?1?an?2n?N,Sn是数列?an?的前n项和,则( )
??A.a2018?22018
B.S2018?3?21009?3 D.数列?an?是等比数列
C.数列?a2n?1?是等差数列 【答案】B
n*【解析】数列数列?an?满足a1?1,an?1?an?2n?N,
??当n?2时,an?an?1?2n?1an?1?2, 两式作商可得:an?1∴数列?an?的奇数项a1,a3,a5,L,成等比,偶数项a2,a4,a6,L,成等比,
5
对于A来说,a?a2?22018?122018?2?21008?21009,错误;
对于B来说,S2018??a1?a3?L?a2017???a2?a4?L?a2018? 1??1?21009?1?22??1?21009?1?2???3?21009?3,正确;
对于C来说,数列?a2n?1?是等比数列,错误; 对于D来说,数列?an?不是等比数列,错误,故选B. 12.已知数列?an?满足:a1?1,an?1?b1??2?5?,
an?1?n?N??.设bn?1??n?2?????1??n?N??,?an?2?an?且数列?bn?是单调递增数列,则实数的取值范围是( ) 2? A.???,3??B.??1,?
2??,? C.??112? D.??1,【答案】B
【解析】∵数?an?满足:a1?1,an?1??ann?N??. ?an?21212??1,化为?1??2, an?1anan?1an1?1??1∴数列??是等比数列,首项为?1?2,公比为2,
a1a?n?∴
1?1??1?2n,?bn?1??n?2????1???n?2???2n, an?an?∵b1??2?5?,且数列?bn?是单调递增数列,
2∴b2?b1,∴?1?2???2???5?,解得?1???2,
由bn?2?bn?1,可得?????n?1,对于任意的n?N?恒成立, 233,故答案为?1???.故选B. 22
6
二、填空题
13.已知数列?an?的前n项和为Sn,且Sn?n2?2n,则an?___________. 【答案】2n?1
【解析】数列?an?的前n项和为Sn,且Sn?n2?2n, Sn?1??n?1?2?2?n?1?,两式想减得到an?2n?1.
此时n?1,检验当n?1时,a1?3符合题意,故an?2n?1.故答案为an?2n?1.14.数列?an?中,若a1?1,ann?1?n?1an,则an?______. 【答案】
1n 【解析】∵an1?1,an?1?n?1an,则?n?1?an?1?nan?a1?1, ∴an?1n.故答案为1n.
15.设数列?ann?满足nan?1??n?1?an?n?2?n?N??,a11?2,an?___________.【答案】n2n?1
【解析】∵nan?1??n?1?an?nn?2?n?N??, ?an?1n?1?ann?1?n?2??n?1??11n?1?n?2, ∴
anan?11aaan?n?1?n?1n?1,22?11?12?13,累加可得nn?a111?2?n?1, ∵a11?2,ann?1?1n?1?nn?1,
∴an2n2n?n?1.故答案为an?n?1.
16
.
已
知
数
列
?an?满足
a1?2,
?4an?1?5??4an?1???3111a?a1???1?1na_______1??1?. ?2?a?3?1【答案】3n?12?2n?32 【解析】令bn?4?an?1?,则bn?1?4?an?1?1?,
则
7
,由题意可得?bn?1?1??bn?3???3, 31即bnbn?1?3bn?1?bn?0,整理可得b???1, nbn?1
令c1n?b,则c,由题意可得c1?1?n?1?3cn?1n?1??3??cn?2??, n2且c11113131?b?a?,cn?11??,故cn???3,
14?1?1?42424即c1n114bn11n?4?3?2,bn?c?n,an?1???3n?2, n3?243n?2,an?1据此可知
1a?1?11123n3n?13a??L?a?3?3?3?L?3?2n??2n?. 12?1a3?1n?122
三、解答题
17.已知各项均为正数的数列?a2n?的前n项和为Sn,且an?2an?4Sn. (1)求Sn; (2)设bn??n?1?n??S?1?n,求数列??的前n项和?bTn.
n?【答案】(1)Sn?n2?n;(2)Tn?1?1n?1.
【解析】(1)由题意得???a2n?2an?4Sn2,两式作差得?an?1?an??an?1?an?2??0,??an?1?2an?1?4Sn?1又数列?an?各项均为正数,∴an?1?an?2?0,即an?1?an?2, 当n?1时,有a21?2a1?4S1?4a1,得a1?a1?2??0,则a1?2, 故数列?an?为首项为2公差为2的等差数列,∴Sn?nan?n?1?1?2d?n2?n.
(2)11?1?nb?n?n?1?n??1S?nnn?n?1??1n?1n?1,
n∴T?1n?11n?)?1?1i?1bi?(i?1i?i?1n?1.
18.在数列?a?中,a2n1?4,nan?1??n?1?an?2n?2n.
8
?an?(1)求证:数列??是等差数列;
?n??1?(2)求数列??的前n项和Sn.
?an?
【答案】(1)见解析;(2)Sn?n.
2?n?1?2【解析】(1)nan?1??n?1?an?2n?2n的两边同时除以n?n?1?,得
an?1an??2?n?N??, n?1n?an?∴数列??是首项为4,公差为2的等差数列
?n?a(2)由(1),得n?2n?2,
n∴an?2n2?2n,故
111?n?1??n1?11??2???????, an2n?2n2n?n?1?2?nn?1?∴Sn?1??1??11?1???11?????????????? 2??nn?1????2??23??1??111??111??1?1?n1???????????1????????2?n??23n?1????23?2?n?1?2?n?1?.
9
相关推荐: