优质文档
∴L(x)在故答:当9a万元; 当
上单调递增;在
.
上单调递减,
每件商品的售价为7元时,该连锁分店一年的利润L最大,最大值为27﹣
每件商品的售价为元时,该连锁分店一年的利润L最大,最大值为
万元.
21.21.解法一:(Ⅰ)f??x??mex?1,
①当m…0时,f??x??0,f?x?在???,???上为增函数. ?1?②当m?0时,令f??x??0,得x?ln???.
?m???1??1??若f??x??0,则x?ln???,f?x?在???,ln????上为增函数;
?m??m?????1???1?若f??x??0,则x?ln???,f?x?在?ln???,???上为减函数.
?m???m??(Ⅱ)①当m…0时,由(Ⅰ)知,f?x?为增函数,所以f?x?至多只有一个零点. ②当m??1时,0??1?1??1,由(Ⅰ)知,f?x?max?ln????0, m?m?所以f?x??0在R上恒成立,f?x?至多只有一个零点. ③当?1?m?0时,?1m?1,则f??1???0,fme??1???1??ln?????ln????0,
?m???m???x2?令t?x??e??1?x??,则t??x??ex??1?x?,
2??x由(Ⅰ)知,当m??1时,f?x???ex??1?x?在???,0?为增函数,在?0,???为减函数,所以f?x??f?0??0,即ex…1?x,所以t??x?…0,t?x?为增函数.
?x2x2?所以当x?0时,t?x??t?0??0,即e?1?x?,所以f?x??m?1?x???1?x,
22??x22?2?2??所以f????m?1??2??1??m?1?0,
m?m??mm????1???1??因为f?x?在???,ln????上为增函数;f?x?在?ln???,???上为减函数,
?m?????m??所以f?x?有且只有两个零点.
优质文档
优质文档
???1?2??1??综上所述,?1?m?0,x1???1,ln????,x2??ln???,??.
?m?????m?m?2??又因为f?0??m?1?0,所以x1???1,0?,x2??0,??
m??依题意,f?x1??mex1?x1?1?0,f?x2??mex2?x2?1?0,所以?m?令g?x??1??x?1?x?1x?gx?gx,则,, gx?????????12exexexx1?1x2?1?x2. exe当x?0时,g??x??0,g?x?为减函数. 要证x1?x2?0,即证x2??x1?0,
只需证g?x2??g??x1?,只需证g?x1??g??x1?. 令h?x??g?x??g??x?,即h?x??x?1??x?1?ex, xe2xxe?1??xx?所以h?x???x?xe?,
eex当?1?x?0时,e2x?1,h??x??0,h?x?为增函数, 所以h?x1??h?0??0,故g?x1??g??x1?,故x1?x2?0. 解法二:(Ⅰ)同解法一.
(Ⅱ)因为f?x?有两个零点,所以方程mex?x?1?0,即?m?令g?x??1??x?1?x?1x?,则, gx?????exexexx?1有两解. ex当g??x??0时,x?0,g?x?为增函数;当g??x??0时,x?0,g?x?为减函数. 所以g?x??g?0??1.
又因为当x??1时,g?x??0;当x??1时,g?x??0, 所以0??m?1,且x1???1,0?,x2??0,???.
要证x1?x2?0,即证x2??x1?0,只需证g?x2??g??x1?, 因为?m?g?x1??g?x2?, 所以只需证g?x1??g??x1?,即证
x1?1?x1?1??x1, ex1e只需证?x1?1?e?x1??x1?1?ex1?0,x1???1,0?. 令h?x???x?1?e?x??x?1?ex,则
优质文档
优质文档
?1??0?1?由?e???x??x??e?x,得h??x???xe?x?xex??x?e?x?ex?,
e?e??x当x???1,0?时,e?x?1?ex,故h??x??0,h?x?为增函数, 所以h?x1??h?0??0,故x1?x2?0.
?x?3cos?,22.(Ⅰ)C1的参数方程为?(?为参数),
y?sin??C2的直角坐标方程为x2?y2?8y?15?0,即x2??y?4??1.
2(Ⅱ)由(Ⅰ)知,C2的图象是以C2?0,4?为圆心,1为半径的圆. 设P?3cos?,sin??,则
PC2??3cos??2??sin??4? 2?9?1?sin2????sin2??8sin??16? 1????8?sin????27.
2??21当sin???时,PC2取得最大值27?33.
2又因为PQ?PC2?1,当且仅当P,Q,C2三点共线,且C2在线段PQ上时,等号成立. 所以PQmax?33?1.
优质文档
相关推荐: