2-20.下面的信号是周期的吗?若是,请指明其周期。 (1)f(t)?asint?bcost (30) 53t?(2)f(t)?asint?bcost (12?)
633?8(3)f(t)?asin(t?) (?)
433(4)f(t)?acos(t????
2-21.如图所示,有N?2n?1个脉宽为?的单位矩形脉冲等间隔(间隔为T??)地分布在原点两侧,设这个信号为x(t),求其FT。
解:由题意,
4? 8
())5x(t)?m??n?xn0(t?mT)
其中x0(t)?G?(t),其FT为X0(?)??sinc(??2)。根据FT的时移特性,可以求得
ejm?T?e?j(n?1)?T?n?jm?T?X(?)?X0(?)??e??X0(?)?1?e?j?T?m??n?ej?T/2(ejN?T/2?e?jN?T/2)?X0(?)??j?T/2j?T/2e(e?e?j?T/2)(ejN?T/2?e?jN?T/2)?X0(?)?(ej?T/2?e?j?T/2)N?Tsin()2?X0(?)??Tsin()2下面分析一下所求的结果。
N?T)2m?2当??时,由罗彼塔法则可以求得?N,因此X(?)?NX0(?),是单
?TTsin()22m?个矩形脉冲频谱X0(?)的N倍,这是N个矩形脉冲的谱相互叠加的结果;而当??(m不
NTN?Tsin()2是N的倍数)时,。 ?0,这是N个谱相互抵消的结果。见图(b)?Tsin()2sin(可以看出,如果N不断增大,这些等间隔分布的矩形脉冲的频谱能量逐渐向离散点
2m?处集中,而且幅度也越来越大。特别地,当N??时,时域信号变成了周期矩形脉T2m?冲信号,而频域则变成了只在离散点??处有值的离散谱,在这些点处的频谱幅度变成
T??了冲激信号(因为能量趋于无穷大)。这也应验了:借助于冲激信号,周期信号也存在FT。
2-22.“时域相关性定理”可描述如下
F[Rxy(?)]?X(f)?Y(f)
试证明。
下面给出两种证明方法。 证明1:
??F[Rxy(?)]???x(t)?y*(t??)dt?e?j2?f?d?????????????????x(t)??y*(t??)e?j2?f?d??dt???????????y*(t??)e?j2?f(??t)d(??t)?dt?e?j2?ftx(t)????????????????
?x(t)e?j2?f?dt???y*(?(??t))e?j2?f(??t)d(??t)??????????X(f)?Y*(f)这里利用式:F[y*(?t)]?Y*(f),是FT的“反褶共轭”性质。
证明2:
根据相关运算与卷积运算之间的关系
Rxy(?)?x(?t)?y(t)
利用FT的“反褶共轭”性质,可以直接得到结论。
在式中,令x?y,则可得
自相关的傅里叶变换
2F[Rx(?)]?X(f)?X*(f)?X(f)
式中说明,“函数相关的FT是其幅度谱的平方”,换句话说,“函数的自相关函数与其幅度谱的平方是一对傅里叶变换对”。
利用FT的奇偶虚实性,若y(t)是实偶函数,那么Y(f)也是实偶函数。这样我们就得到了一个特例结论,
F[Rxy(?)]?X(f)?Y*(f)?X(f)?Y(f)
即当y(t)是实偶函数时,相关性定理与卷积定理是一致的。 2-24.帕斯瓦尔定理
?证明:
???x(t)dt??2???2X(f)df
????f(t)dt??2????x(t)x*(t)dt*????x(t)?X(f)ej2?ftdf?dt????????(IFT定义)????????
?*?j2?ftx(t)??X(f)edf???dt????????j2?ft?X*(f)??x(t)edt??df????????????????
(交换积分次序)(FT定义)X*(f)X(f)dfX(f)df2
第三章 习题及题解
1
试说明二阶装置的阻尼比ζ多采用ζ=(0.6~0.7)的原因
答: 二阶系统的阻尼比ζ多采用ζ=(0.6~0.7)的原
因,可以从两个主要方面来分析,首先,根据系统不失真传递信号的条件,系统应具有平直的幅频特性和具有负斜率的线性的相频特性,右图所示为二阶系统的幅频特性和相频特性曲线,严格说来,二阶系统不满足上述条件,但在一定的范围内,近似有以上关系。在特性曲线中可以看出,当ω﹤0.3ωn时,ζ对幅频特性影响较小,φ(ω)-ω曲线接近直线。A(ω)在该范围内的变化不超过10%,可作为不失真的波形输出。在ω﹥(2.5~3.0)ωn范围内φ(ω)接近180?,且
A(?)543210?(?)0????????????????????????????????????1122??????-90?????????????????????????????????????3?????n3?????n-180?差值甚小,如在实际测量或数据处理中用减去固定相位差的方法,则可以接近不失真地恢复被测输入信号
二阶系统的幅频特性曲线和相频特性波形。若输入信号的频率范围在上述两者之间,由于系统的频率特性受ζ的影响较大,因而需作具体分析。分析表明,当ζ=0.6~0.7时,在ω=(0~0.58)ωn 的频率范围中,幅频特性A(ω)的变化不超过5%,此时的相频特性曲线也接近于直线,所产生的相位失真很小。
其次其他工作性能综合考虑,单位阶跃信号输入二阶系统时,其稳态输出的理论误差为零。阻尼比将影响超调量和振荡周期。ζ≥1,其阶跃输出将不会产生振荡,但需要经过较长时间才能达到稳态输出。ζ越大,输出接近稳态输出的时间越长。ζ﹤1时,系统的输出将产生振荡。ζ越小,超调量会越大,也会因振荡而使输出达到稳态输出的时间加长。显然,ζ存在一个比较合理的取值,ζ一般取值为0.6~0.7。
另外,在斜坡输入的情况下,ζ俞小,对斜坡输入响应的稳态误差2ζ/ωn 也俞小,但随着ζ的减小,超调量增大,回调时间加长,当ζ=0.6~0.7时,有较好的响应特性。
综上所述,从系统不失真传递信号的条件和其他工作性能综合考虑,只有ζ=0.6~0.7时,才可以获得最佳的综合特性。
2 试述信号的幅值谱与系统的幅频特性之间的区别 (1)对象不同,前者对象是信号;后者的对象是系统;(2)前者反映信号的组成,后者反映系统对输入信号不同频率成分的幅值的缩放能力(3)定义不同:处理方法各异:前者是对信号付氏变换的模,后者是输出的付氏变换与输入的付氏变换之比的模
3 已知信号
x(t)=5sin10t+5cos(100t-π/4)+4sin(200t+π/6),通过传递函数为
H(s)?1的测试系统,试确定输出信号的频率成分并绘出输出信号的幅值谱。
0.005s?1解: 将输入信号的各次谐波统一写成Xisin(ωit+φxi)的形式 x(t)=5sin10t+5sin(100t+π/4)+4sin(200t+π/6)
信号x(t)由三个简谐信号叠加而成,其频率、幅值、相位分别为
频率 ω1=10 ω2=100 ω3=200 幅值Xi A1=5 A2 =5 A3=4 相位φxi φx1=0 φx2=π/4 φx3=π/6 设输出信号为y(t),根据频率保持特性,y(t)的频率成分应与x(t)的频率成分相同,各频率成分的幅值和相位可由输入信号的幅值和相位与测试系统频率响应特性H(ω)确定,根据题设条件,可得系统的频率响应函数 H(?)?系统的幅频特性
1
0.005?j?1A(?)?
11?(0.005?)2
?(?)??arctg0.005?
幅值Yi= A (ωi) Xi Y1=4.99 Y2 =4.47 Y3=2.83 相位φyi=φ(ωi)+φxi φy1=-0.05 φy2=0.32 φy3=-0.26 输出信号y(t)的频率、幅值、初相位分别为
频率 ω1=10 ω2=100 ω3=200
绘出y(t)的幅值谱如右图。
?)Y(5432104080120160200?4 ω 在对某压力传感器进行校准时,得到一组输入输出的数据如下:
正行程平均值 反行程平均值 0.1 220.2 221.3 0.2 480.6 482.5 0.3 762.4 764.2 0.4 0.5 0.6 1532.8 1534.1 0.7 0.8 0.9 2211.6 2212.1 992.3 1264.5 993.9 1266.1 1782.5 2012.4 1784.1 2013.6 试计算该压力传感器的最小二乘线性度和灵敏度。
解 由校准数据得知,该压力传感器近似线性特性,迟滞误差较小,可用平均校准曲线来计算 根据3-14式
数据序号 1 0.1 220.75 0.01 2 0.2 481.55 0.04 3 0.3 763.3 0.09 4 0.4 993.10 0.16 5 0.5 1265.30 0.25 6 0.6 1533.45 0.36 7 0.7 1783.3 0.49 8 0.8 9 0.9 ∑ 4.5 xi yi 2013.0 2211.85 11265.6 0.64 0.81 2.85 xi2
相关推荐: