★ 形成性考核作业 ★
四、证明题
1.设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G中的奇数度顶点个数相等.
证明:设G??V,E?,G??V,E??.则E?是由n阶无向完全图Kn的边删去E所得到的.所以对于任意结点u?V,u在G和G中的度数之和等于u在Kn中的度数.由于n是大于等于3的奇数,从而Kn的每个结点都是偶数度的(n?1 (?2)度),于是若u?V在G中是奇数度结点,则它在G中也是奇数度结点.故图G与它的补图G中的奇数度结点个数相等.
2.设连通图G有k个奇数度的结点,证明在图G中至少要添加
k条边才能2使其成为欧拉图.
证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k是偶数. 又根据定理4.1.1的推论,图G是欧拉图的充分必要条件是图G不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图.
故最少要加
k条边到图G才能使其成为欧拉图. 2 6
相关推荐: