第一范文网 - 专业文章范例文档资料分享平台

离散数学网络课程形成性考核第4次形考任务

来源:用户分享 时间:2025/6/24 11:59:25 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

★ 形成性考核作业 ★

四、证明题

1.设G是一个n阶无向简单图,n是大于等于3的奇数.证明图G与它的补图G中的奇数度顶点个数相等.

证明:设G??V,E?,G??V,E??.则E?是由n阶无向完全图Kn的边删去E所得到的.所以对于任意结点u?V,u在G和G中的度数之和等于u在Kn中的度数.由于n是大于等于3的奇数,从而Kn的每个结点都是偶数度的(n?1 (?2)度),于是若u?V在G中是奇数度结点,则它在G中也是奇数度结点.故图G与它的补图G中的奇数度结点个数相等.

2.设连通图G有k个奇数度的结点,证明在图G中至少要添加

k条边才能2使其成为欧拉图.

证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k是偶数. 又根据定理4.1.1的推论,图G是欧拉图的充分必要条件是图G不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G的所有结点的度数变为偶数,成为欧拉图.

故最少要加

k条边到图G才能使其成为欧拉图. 2 6

离散数学网络课程形成性考核第4次形考任务.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c9u4gy2tf3r3z01x0bvw21wxgu8k8be00ne5_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top