严平稳相较于宽平稳来说,条件更多更严格,而我们时常运用的时间序列,大多宽平稳就够了~~
什么是严平稳:
是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。这样,数学期望和方差这些参数也不随时间和位置变化。(比如白噪声)
什么是宽平稳:
宽平稳是使用序列的特征统计量来定义的一种平稳性。它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。
两者关系:
一般关系:
严平稳条件比宽平稳条件苛刻,通常情况下,严平稳(低阶矩存在)能推出宽平稳成立,而宽平稳序列不能反推严平稳成立。
特例:
不存在低阶矩的严平稳序列不满足宽平稳条件,例如服从柯西分布的严平稳序列就不是宽平稳序列。当序列服从多元正态分布时,宽平稳可以推出严平稳。
如何判断序列是平稳的?
咱们这次先从图形法上看(通常越是简单的方法,往往越能看到问题,图形给出的第一感觉也许就是真相哦~~~~)
时序图,例如(eviews画滴):
分析:什么样的图不平稳,先说下什么是平稳,平稳就是围绕着一个常数上下波动。 看看上面这个图,很明显的增长趋势,不平稳。
我们还可以根据自相关和偏相关系数来查看:
还以上面的序列为例:用eviews得到自相关和偏相关图,Q统计量和伴随概率。 分析:平稳的序列的自相关图和偏相关图不是拖尾就是截尾。截尾就是在某阶之后,系数都为 0 ,怎么理解呢,看上面偏相关的图,当阶数为 1 的时候,系数值还是很大, 0.914. 二阶长的时候突然就变成了 0.050. 后
相关推荐: