第十三章 非参数检验
许多统计分析方法的应用对总体有特殊的要求,如t检验要求总体符合正态分布,F检验要求误差呈正态分布且各组方差整齐,等等。这些方法常用来估计或检验总体参数,统称为参数统计。
但许多调查或实验所得的科研数据,其总体分布未知或无法确定,这时做统计分析常常不是针对总体参数,而是针对总体的某些一般性假设(如总体分布),这类方法称非参数统计(Nonparametric tests)。
非参数统计方法简便,适用性强,但检验效率较低,应用时应加以考虑。
第一节 Chi-Square过程
13.1.1 主要功能
调用此过程可对样本数据的分布进行卡方检验。卡方检验适用于配合度检验,主要用于分析实际频数与某理论频数是否相符。
13.1.2 实例操作
[例13-1]某地一周内各日死亡数的分布如下表,请检验一周内各日的死亡危险性是否相同?
周 日 一 二 三 四 五 六 日 死亡数 11 19 17 15 15 16 19 13.1.2.1 数据准备 激活数据管理窗口,定义变量名:各周日为day,死亡数为death。按顺序输入数据, 结果见图13.1。激活Data菜单选Weight Cases...命令项,弹出Weight Cases对话框(如图13.2),选death点击钮使之进入Frequency Variable框,定义死亡数为权数,再点击OK钮即可。
图13.1 数据录入窗口
图13.2 数据加权对话框
13.1.2.2 统计分析
激活Statistics菜单选Nonparametric Tests中的Chi-Square...命令项,弹出Chi-Square Test对话框(图13.3)。现欲对一周内各日的死亡数进行分布分析,故在对话框左侧的变量列表中选day,点击钮使之进入Test Variable List框,点击OK钮即可。
图13.3 卡方检验对话框
13.1.2.3 结果解释
在结果输出窗口中将看到如下统计数据: 运算结果显示一周内各日死亡的理论数(Expected)为15.71,即一周内各日死亡均数;
2
还算出实际死亡数与理论死亡数的差值(Residual);卡方值χ = 3.4000,自由度数(D.F.)= 6 ,P = 0.7572 ,可认为一周内各日的死亡危险性是相同的。 DAY Cases Category Observed Expected Residual 1.00 11 15.71 -4.71 2.00 19 15.71 3.29 3.00 17 15.71 1.29 4.00 15 15.71 -.71 5.00 13 15.71 -2.71 6.00 16 15.71 .29 7.00 19 15.71 3.29 --- Total 110 Chi-Square D.F. Significance 3.4000 6 .7572 第二节 Binomial过程
13.2.1 主要功能
有些总体只能划分为两类,如医学中的生与死、患病的有与无。从这种二分类总体中抽取的所有可能结果,要么是对立分类中的这一类,要么是另一类,其频数分布称为二项分布。调用Binomial过程可对样本资料进行二项分布分析。
13.2.2 实例操作
[例13-2]某地某一时期内出生40名婴儿,其中女性12名(定Sex=0),男性28名(定Sex=1)。问这个地方出生婴儿的性比例与通常的男女性比例(总体概率约为0.5)是否不同? 13.2.2.1 数据准备
激活数据管理窗口,定义性别变量为sex。按出生顺序输入数据,男性为1 ,女性为0。 13.2.2.2 统计分析
激活Statistics菜单选Nonparametric Tests中的Binomial Test...命令项,弹出 Binomial Test对话框(图13.4)。在对话框左侧的变量列表中选sex,点击钮使之进入Test Variable List框,在Test Proportion框中键入0.50,再点击OK钮即可。
图13.4 二项分布检验对话框
13.2.2.3 结果解释
在结果输出窗口中将看到如下统计数据:
二项分布检验表明,女婴12名,男婴28名,观察概率为0.7000(即男婴占70%),检验概率为0.5000,二项分布检验的结果是双侧概率为0.0177,可认为男女比例的差异有高度显著性,即与通常0.5的性比例相比,该地男婴比女婴明显为多。 SEX Cases Test Prop. = .5000 28 = 1.00 Obs. Prop. = .7000 12 = .00 -- Z Approximation 40 Total 2-Tailed P = .0177 第三节 Runs过程
13.3.1 主要功能
依时间或其他顺序排列的有序数列中,具有相同的事件或符号的连续部分称为一个游程。调用Runs过程可进行游程检验,即用于检验序列中事件发生过程的随机性分析。
相关推荐: