11,即,此时n?1为奇数; ?b?bb??nn?1n?12n2n111当n为奇数时,bn?n??bn?bn?1,即2bn?n??bn?1,则bn?1?n?1,
222此时n?1为偶数;
当n为偶数时,bn??1?(n为奇数)??2n?1则 bn??,n?N*. ……………………………………3分
?1(n为偶数)??2n?1(n为奇数)??则 Tn??2n?1
??0(n为偶数)故 H2n?1?T1?T2?T3?T4?T2n?2?T2n?1
11(1?)2n1111111124??2?4?6?8??2n?2?2n????(1?n)……………5分 1222222341?4131因为1?n对于一切n?N*递增,所以?1?n?1,
44411所以 ??H2n?1??.
34若对任意的n?N*,H2n?1都具有性质Pk,则(?,?]??x1314?k?6k?1??x??, 44??1?k?6???14?43,解得
即?0?k?,又k?2,k?N*,则k?3或4,
3?k?1??1??44即所有满足条件的正整数k的值为3和4.………………………………………8分 说明:此处可不求Tn,直接用求和定义得H2n?1?T1?T2?T3?T4?T2n?2?T2n?1
=(2n?1)b1?(2n?2)b2?(2n?3)b3?(2n?4)b4?=[(2n?1)b1?(2n?2)b2]?[(2n?3)b3?(2n?4)b4]?请相应评分.
?3b2n?3?2b2n?2?b2n?1 ?[3b2n?3?2b2n?2]?b2n?1
相关推荐: