目录
第一章 绪论 ......................................................................................................................................... 3 1.1
本文的。。。。。 .................................................................................................................. 3
1.1.1智能优化算法(见智能优化算法及应用P1页) .............................................................. 4 1.1.2三种典型智能优化算法 ........................................................................................................ 4 1.1.3粒子群算法与其他算法的异同 ............................................................................................ 6 1.1.4粒子群算法的优劣势及应用(见粒子群算法及其应用) ................................................ 7 1.2 本文的研究背景 .......................................................................................................................... 7 1.3 本文的研究内容 .......................................................................................................................... 8 第二章 粒子群算法的基本原理和发展现状 ..................................................................................... 8 2.1 引言 .............................................................................................................................................. 8 2.2 粒子群算法的起源背景 .............................................................................................................. 8 2.3 粒子群算法的基本思想 .............................................................................................................. 9 2.4 基本粒子群算法模型与实现 .................................................................................................... 12 2.4.1基本粒子群算法模型 .......................................................................................................... 12 2.4.2粒子的运动轨迹分析 .......................................................................................................... 13 2.4.3基本粒子群算法的参数设置 .............................................................................................. 13 2.4.4基本粒子群算法流程 .......................................................................................................... 14 2.4.5 基本粒子群算法的优缺点 ................................................................................................. 17 2.5 粒子群算法的研究现状及方向 ................................................................................................ 17 2.5.1 粒子群算法的研究现状 ..................................................................................................... 18 2.5.2 粒子群算法的研究方向 ..................................................................................................... 19 2.6 粒子群算法的主要应用 ............................................................................................................ 19 2.7 本章小结 .................................................................................................................................... 21 第三章 改进的粒子群算法 ............................................................................................................... 21 3.1 引言 ............................................................................................................................................ 21 3.2 改进的粒子群算法综述 ............................................................................................................ 21 3.3标准粒子群算法(粒子群算法及应用P19) ............................................................................... 25 3.3.1 算法思想 ............................................................................................................................. 25
3.3.2 测试函数 ............................................................................................................................. 26 3.3.3 算法测试 ............................................................................................. 错误!未定义书签。 3.3.4 测试结果与算法评估 ......................................................................................................... 31 3.4小生境粒子群算法 ..................................................................................................................... 37 3.4.1 算法思想 ............................................................................................................................. 37 3.4.2 算法测试 ............................................................................................................................. 37 3.4.3 测试结果与算法评估 ......................................................................................................... 37 3.5自适应调整飞行时间粒子群算法 ............................................................................................. 37 3.5.1 算法思想 ............................................................................................................................. 37 3.5.2 算法测试 ............................................................................................................................. 37 3.5.3 测试结果与算法评估 ......................................................................................................... 37 3.6本章小结 ..................................................................................................................................... 37 第四章 自适应粒子群算法AFIPSO .................................................................................................. 38 4.1 引言 ............................................................................................................................................ 38 4.2 AFIPSO基本思想 ........................................................................................................................ 38 4.3 AFIPSO算法流程 ........................................................................................................................ 39 4.4 AFIPSO实验 ................................................................................................................................ 40 4.4.1 测试函数 ............................................................................................................................. 40 4.4.2 参数选取 ............................................................................................................................. 40 4.4.3 优化结果与结果分析 ......................................................................................................... 41 4.5 本章小结 .................................................................................................................................... 42 第五章 AFIPSO在多目标优化问题中的应用 .................................................................................. 43 5.1 引言 ............................................................................................................................................ 43 5.2 AFIPSO对多目标函数的优化 .................................................................................................... 44 5.2.1自适应粒子群算法(AFIPSO) .......................................................................................... 44 5.2.2 AFIPSO对多目标函数的优化 ............................................................................................. 44 5.3 FCCU分馏塔的多目标优化模型 ............................................................................................... 48 5.4 AFIPSO在工程中的应用 ............................................................................................................ 49 5.4.1 多目标转化为单目标 ......................................................................................................... 49 5.4.2 AFIPSO智能优化FCCU分馏塔参数调试 ........................................................................... 49
5.4.3 AFIPSO优化FCCU分馏塔结果及其比较分析 ................................................................... 51 5.5 本章小结 .................................................................................................................................... 52 结论 ....................................................................................................................................................... 52 参考文献 ............................................................................................................................................... 53 攻读硕士期间取得的研究成果 ........................................................................................................... 58 致谢 ....................................................................................................................................................... 58
第一章 绪论
随着人类生存空间的扩大,以及认识世界和改造世界范围的拓宽,现实中碰到的许多科学、工程和经济问题呈复杂化、多极化、非线性等特点,这就使得高校的优化技术和智能计算成为迫切要求。
经典的优化算法通常采用局部搜索方法,它们一般与特定问题相关或是局部搜索方法的变形,适用于求解小规模且定义明确的问题。而实际工程问题一般规模较大,寻找一种适合于大规模并且局域智能特征的算法已成为人们研究的目标和方向。
二十世纪八十年代以来,涌现了很多新颖的优化算法,如:混沌算法、遗传算法GA(Genetic Algorithm)、蚁群算法ACA(Ant Colony Algorithm)、粒子群算法PSO(Particle Swarm Optimization)和模拟退火算法SA()等。它们通过模拟某些自然现象的发展过程而来,为解决复杂问题提供了新的思路和手段。由于这些算法构造直观且符合自然机理,因而被称为智能优化算法()。
1.1 本文的。。。。。
智能优化算法是通过模拟某些自然现象的发展过程而形成的算法,以结构化和随机化的搜索策略实现算法的优化过程,常用于大规模的并行计算。智能优化算法提出后受到了人们的重视,其中遗传算法、蚁群算法、粒子群算法作为三种典型智能算法得到迅速发展。
1.1.1智能优化算法(见智能优化算法及应用P1页)
智能优化算法是通过模拟或揭示某些自然现象或过程发展而来的,与普通的搜索算法一样都是迭代算法,对问题的数学描述不要求满足可微性、凸性等条件,是以一组解(种群)为迭代的初始值,将问题的参数进行编码,映射为可进行启发式操作的数据结构。算法仅用到优化的目标函数值的信息,不必用到目标函数的倒数信息,搜索策略是结构化和随机化的(概率型),其优点是:具有全局的、并行的优化性能,鲁棒性、通用性强等。智能优化算法的使用范围非常广泛,特别适用大规模的并行计算。
1.1.2三种典型智能优化算法
智能优化算法的应用范围广泛,特别适用于大规模的并行计算。通过研究,人们先后提出了多种智能优化算法,其中遗传算法、蚁群算法、粒子群算法较为典型。
1、遗传算法(见粒子群算法及应用P5)
1975年,Holland[]提出了遗传算法,它是由自然界的进化而得到启发的一种有效解决最优化问题的方法。遗传算法是一种全局范围的探索过程,在解决复杂问题中它常常能够寻找到最优解的附近区域。每个染色体个体代表一个潜在解,在利用此算法求解前,需对染色体进行二进制编码,然后通过选择、交叉和变异三个步骤进行进化,解随着进化而得到改善。
1)选择运算:以一定概率从种群中选择若干个体的操作。选择运算的目的是为了从当前群体中选出优良的个体,使它们有机会作为父代繁殖后代子孙。判断个体优劣的准则是个体的适应度值。选择运算模拟了达尔文试着生存、优胜劣汰原则,个体适应度越高,被选择的机会就越大。
2)交叉运算:两个染色体之间通过交叉而重组形成新的染色体,相当于生物进化过程中有性繁殖的基因重组过程。
3)变异运算:染色体的某一基因发生变化,从而产生新的染色体,表现出新的性状。变异运算模拟了生物进化过程中的基因突变方法,将某个染色体上的基因变异为其等位基因。
遗传算法作为一种重要的智能优化算法,发展至今已较为成熟,广泛应用于各个领
域。算法搜索从群体出发,具有潜在的并行性;且交叉和变异的过程能有效避免早熟现
象,鲁棒性强;搜索使用评价函数启发,使用概率机制进行迭代,具有随机性、可扩展性、容易与其他算法结合的优点。
但是遗传算法对于系统中的反馈信息利用不够,当求解到一定范围时往往做大量无谓的冗余迭代,求精确解效率低。
2、蚁群算法(见智能优化算法及应用P121页)
蚁群算法是最近几年才提出的一种新型的智能优化算法,是对真实蚂蚁的觅食过程的抽象继承与改进,最早成功应用于解决著名的旅行商问题TSP(Traveling Salesman Problem)。
生物界中的蚂蚁在寻找食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物(pheromone)—信息素,使得一定范围内的其他蚂蚁能够觉察并影响其行为。当某些路径上走过的蚂蚁越来越多时,留下的这种信息素也越多,以致后来蚂蚁选择该路径的概率也越高,从而更增加了该路径的吸引强度,蚁群就是靠着这种内部的生物协同机制逐渐形成一条它们自己事先并未意识到的最短路线。蚁群算法从这种模型中得到启示并用于解决优化问题。蚁群算法每个优化问题的解都是搜索空间中的一只蚂蚁,蚂蚁都有一个由被优化函数决定的适应度值(与要释放的信息素成正比),蚂蚁就是根据它周围的信息素的多少决定它们移动的方向,同时蚂蚁也在走过的路上释放信息素,以便影响别的蚂蚁。
在该算法中,可行解经过多次迭代后,最终将以最大的概率逼近问题的最优解。它不仅利用了正反馈原理、在一定程度上可以加快进化过程,而且是一种本质并行的算法,不同个体之间不断进行信息的交流和传递,从而能够相互协作,有利于发现较好解。
但是蚁群算法作为一种新兴的算法,还存在一定的缺陷,如:该算法需要较长的搜索时间,由于蚁群中各个个体的运动是随机的,虽然通过信息交换能够向着最优解优化,但是当群体规模较大时,很难在较短的时间内从大量杂乱无章的路径中找出一条较好的路径。而且在搜索到一定程度后,该算法容易出现停滞现象。
3、粒子群算法(见智能优化算法及应用P页)
粒子群算法最早于1995年提出,是对鸟群、鱼群觅食过程中的迁徙和聚集的模拟,是继遗传算法、蚁群算法后又一群体智能优化算法,目前已成为智能优化算法的另一重要分支。
鸟群在觅食的迁徙过程中,有既分散又集中的特点。总是有那么一只鸟对食物的嗅觉较好,即对食源的大致方向具有较好的洞察力,从而这只鸟就拥有食源的较好信息。
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新初中教育自适应粒子群算法研究及其在多目标优化中应用 全文阅读和word下载服务。
相关推荐: