第一章 一元函数的极限
§1.1 利用定义及迫敛性定理求极限
设R表示实数集合,R*表示扩张的实数集,即R*?R????,???. 例1 若liman?a?R*.证明limn???a1?a2???ann?0?a?R* (算术平均值收敛公式).
?a?n???证明 (1)设a?R,由liman?a,??n???,?N1?0,当n?N1时, an?2.
因此
a1?a2???ann?a
?(a1?a)?(a2?a)???(an?a)n
?a1?a?a2?a???aN?a1nAnAn?aN1?1?a???an?an
??n?N1n??2
???2,
An?其中A?a1?a?a2?a???aN?a.又存在N2?0,当n?N2时,
1?2.因此当
n?max{N1,N2}时,
a1?a2???ann?0?a??2??2??.
(2)设liman???,则?Mn???,?N1?0,当n?N1时,an?3M.
因此
?a1?a2???ann
aN1a1?a2???aNn1??1?aN1?2???annAn1?An?n?N1n?3M,
?0其中A?a1?a2???aN.由于时,
An?M2?0,
n?N1n?1(n???),所以存在N2,当n?N2,
n?N1n?12.因此
a1?a2???ann?12?3M?12M?M.
(3) 当liman???时,证明是类似的.(或令bn??an转化为(2)).
n???注 例1的逆命题是不成立的.反例an???1?n(n?1,2,?),容易看出lim但是极限liman不存在.
n???a1?a2???ann?0,
n???例2 设{an}为单调递增数列, ?n?a1?a2???ann.证明若lim?n???n?a,则liman?a.
n???证明 由{an}为单调递增数列,当m?n时有am?an.固定n,则有
??a1?a2???anm?an?1?an?2???ammm?Am?m?nman,
其中A?a1?a2???an.令m???,则a?lim?m?an.
m???又由于?n?a1?a2???ann?nann?an
所以?n?an?a.令n???,由迫敛性定理得liman?a.
n???注 当{an}为单调递减数列时,上述结论也成立.
例3 设数列{an}收敛,且an?0(n?1,2,?),证明limnn???a1a2?an?liman.(几何平均值收敛公式).
n???证明 设liman?a,则由极限的不等式性质得a?0.
n???(1)若a?0,则limlnan?lna,
n???由例1,因此limlimn???1n(lna1?lna2???lnan)?lna1.
lnann???a1a2?an?limenn????lna1?lna2???lnan??e?a
(2)若a?0,则limlnan???.因此
n???limn???1nn(lna1?lna2???lnan)???1,
?limn???a1a2?an?limenn????lna1?lna2???lnan?0.
注 可以证明当a???时结论也成立.
例4 设an?0(n?1,2,?),证明:若liman?1an存在,则limn???nn???an也存在且limn???nan?liman?1an.
n???证明 令b1?a1,b2?由例3得, limn???a2a1,…,bn?anan?1,….
nb1b2?bn?limbnn???.
所以limn???nan?limanan?1?limn???an?1an.
n???例5 证明limnn!nn???n?e.
n证明1 设an?由例4得 limn,则
nn!an?1ann!??n?1?n?1?n?1?!an?e
?n!nn1????1??n???e(n???).
n???n?limn???n证明2 利用司特林(Stirling)公式n!~
例6 设an?a,bn?b(n???).令cn证明 cn?ab?1n1n1n?1n?n?2?n???e?n得 limnn!n???n?limn???e?2?n?2n1?e
?1n?a1bn?
?a2bn?1???anb1?.证明 limcn?abn???.
?a1bn?a2bn?1???anb1?nab[?a1bn?ab)?(a2bn?1?ab)???(anb1?ab?]
[?a1bn?a1b?a1b?ab)?(a2bn?1?a2b?a2b?ab)???(anb1?anb?anb?ab?] [a1?bn?b)?a2(bn?1?b)???an(b1?b?]?bn[?a1?a)?(a2?a)???(an?a?]??.
由于数列{an}收敛,故是有界的.设an?M(n?1,2,?),则
cn?ab?Mbn?b?bn?1?b???b1?bn?ba1?a???an?an.
利用例1得limcn?ab.
n???
例7 设liman?a.证明limn???a1?2a2???nan2n?a2.
?a?n???证明 由liman?a,??n????0,?N1?0,当n?N1时, an?2.
a2n所以
a1?2a2???nan2n?a2?(a1?a)?2(a2?a)???n(an?a)n2?
?(a1?a)?2(a2?a)???N1(aN?a)1n2??N1?1?(aN1?1?a)???n(an?a)n2?a2n
?An2?1n2?aan?n?1??A????2??222n22nna2n,其中A?a1?a?2a2?a???N1aN?a.
1又存在N2?0,当n?N2时,
An2???2.故当n?max{N1,N2}时,
a1?2a2???nan2n?a2??2??2??.
例8 证明limn???nn?1.
证明 令?n?所以0??n?
nn?1,则n??1??2n?1n?n?1?n?n?12n?n?1??2n???12n?n?1??n2n.
.(n?2)由迫敛性定理得, ?n?0(n???).所以limn?1.
n???例9 求极限limn???1?n2?33???n1?nnn3.
3???nn解 以下不等式是显然的:1?
2?n?nn由例8与迫敛性定理得所求极限为1
例10 设a0,a1是两个定数,且当n证明 由a2?a1?a3?a2?a4?a3?a1?a22a0?a123?2时an?an?1?an?22.证明liman?n???a0?2a13.
a0?a12??,
,
a0?a122,
………
an?an?1???1?n?1a0?a12n?1,
.
相加得an?a1?a0?a1?111?n1??2?????1?n?2??2222??11?12?a0?a13所以lim(a?a)?a0?a1?n1n???.
2这推出liman?n???a0?2a13.
例11 设x1?0,xn?1?3?1?xn3?xn?(n?1,2,?),求极限limxn.
n???分析 若{xn}极限存在且为a,则aa?3?3?1?a?3?a.由此解得a??3.再由xn?0知a?0.故
.
3?1?x1?3?x13?3x1?33?3?x13x1解 由x2?3??3?
?(3?3)x1?3?3?x1?3?3?3?33?x13?3?x1?3?
3得x2?3?3?33?x13?x1?3?3x1?.
同理有x3?3?33?x2x2??3?3??3????3??n?12x1?3.
一般情况有xn??3?3??3????3??x1?3.
所以limxn?3.
n???
例12 设a1?0,an?1?11?an(n?1,2,?),求极限liman.
n???分析 若{an}极限存在且为a,则a?a??1?2??1?25511?a.由此解得a??1?25.再由an?0知a?0.故
.
,我们有
11?a解 令aan?a?11?an?1??an?1?a?1?an?1??1?a??11?aan?1?a?aan?1?a.
由上述递推关系可得an?a?an?1a1?a(n?2,3,?),由于a?1,故得limann?????1?25.
例13 设K是正数,x0?0,对任意自然数n,令xn?1?K?xn?1?2?xn?1???.证明limxn??n????K.
证明 x1?K?1?K??x0????2?x0??1K?1??x0?22??x1?x1?K?1K???x0?2xx0?0??K?2,
同理x1?K?2x0?x0?K?2.两式相除得
nK?x0????x?K?0K??K??2.
n由归纳法得
xn?xn?K?x0????x?K?0K??K??2.由于
x0?x0?KK?x0??1,得到lim?n?????x0?K??K??2?0.
所以limn???xn?xn?KK?0,这证明了limxn?n???K.
搜索“diyifanwen.net”或“第一范文网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,第一范文网,提供最新医药卫生第一章 一元函数的极限 全文阅读和word下载服务。
相关推荐: