习题六
1. 设总体X~N(?,6),从中抽取容量为25的一个样本,求样本方差S小于9.1的概率.
2
解 X~N(?,6),由(n?1)S~?2(n?1),于是
2?2?(n?1)S2?25?1??9.1?22P?S?9.1??P????p???24??36.4??1?p???24??36.4?66??2?1?0.05?0.95.
?102?X,X,L,XN(0,0.3)PX?1.44?. 10是取自正态总体2. 设12的样本,试求??i?i?1?2解:由i?1??Xni?u?2?22~?(n),于是
?102?X??1.44??102??i?1i?P??Xi?1.44??P???P??2?10??16??0.1. 22??i?1??0.3????0.3?????3. 设总体X~N(a,4),X1,X2,?,Xn是取自总体X的一个样本,X为样本均值,试问样本容量n分别为多大时,才能使以下各式成立,
?1?EX?a?2??0.1;?2?EX?a?0.1;???3?P{X?a?1}?0.95.
X?a4X?a解 (1) 因为X~N(a,),所以~N(0,1),从而4n4nn2??2?X?a?4E??1,EX?a??0.1,所以n?40. ?4n???n???2~?(1),于是
2(2)因为X?a~N(0,1),所以 4n1?x22edx?2?2?2???X?a????E??x?4?????n??2所以EX?a?2???0xe?x22?2dx?2???0e?x22?x2?2d????,
22?????422??0.1,nn?从而n?800??254.7,故n?255.
(3) 因为
???????n?1?X?a1??X?a??1?PX?a?1?P???P????2??1?0.95, ???????4?444??2??4???n?nnn??n??????n?n所以???0.975,而?1.96=0.975,从而?1.96,n?15.37,故n?16. ????2?2??24. 已知总体X~N(10,?),?为未知,X1,X2,X3,X4总体X的一个样本,X、S分别为样本
2均值和样本方差
(1)构造一个关于X的统计量Y,使得Y~t(3); (2)设s?1.92,求使P{???X?10??}?0.95的?.
解 (1)
X?10?2~N?0,1?n?1?S2?,~?2?2?n?1?,3S2?2~?2?3?,
?X?10???????2X?102???Y??2?3S??S???2?3????????~t?3?.??
??2?2X?10?2???(2) P{???X?10??}?P?????1?2t2??n?1??0.95, SSSS????所以t2??n?1??0.025,n?4,S??2??3.1824,S?1.92,??3.0551. S5. 为了估计总体均值,抽取足够大的样本,以95%的概率使样本均值偏离总体均值不超过总体标准差?的25%,试求样本容量. 解
?X?u??X?u?nX?u?n?n??????PX?u?0.25??P??0.25??P??????P????444?n?n???????????????n??n?n?2???1?95%,所以??0.975,?1.96,n?61.4656,所以样本容量n?62.????4??4?4????6. 从总体X~N(12,22)中抽取容量为5的样本X1,X2,?,X5,试求
(1) 样本的极小值小于10的概率; (2) 样本的极大值大于15的概率.
解 (1) Pmin?X1,X2,L,X5??10?1?Pmin?X1,X2,L,X5??10
??????X?1210?12???1??P?Xi?10??1???1?P?i???
22???i?1i?1??1????1????1????0.5785.
i?1555(2) Pmax?X1,X2,L,X5??15?1?Pmax?X1,X2,L,X5??15
5??Xi?1215?12??5?1???P???1.5?1?0.9332?0.2923. ?????????1?????22??i?1??i?15????7. 从两个正态总体中分别抽取容量为25和20的两个独立样本,算得样本方差依次为
S12?62.7,S22?25.6,若两总体方差相等,求随机抽取的两个样本的样本方差之比S大于62.7的
S212225.6概率是多少? 解
22????SS62.711S/SSP??P?2.45??2??0.025. ?~F?n1?1,n2?1??F?24,19?,所以?2?/?S?S225.6??S2?2121222221228. 设X1,X2,?,Xn是总体X~N(?,?)的一个样本,样本方差
21n2?422S??(Xi?X),证明D(S)?n?1.
n?1i?12证 因为
(n?1)S2?2~?2(n?1),而
D(?2(n?1))?2(n?1),
??2(n?1)S2??42?4??2(n?1)?所以D(S)?D?. ??22n?1??n?1?(n?1)29. 设X1,X2分别是取自正态总体N(?,?)的容量均为n的相互独立的两个样本的样本均值,
2试确定n,使得两个样本均值之差超过?的概率大于0.01. 解 X1~N(u,?2n),X2~N(u,?2X1?X2n),?2n~N(0,1),
???????n?n?n??X1?X2??X1?X2?PX1?X2???P???1?P??2?2??0.01,???????2?2??2???2??2????nn??????
?n?n???0.995,?2.575,n?13. ??2?2??210. 设总体X~?(?),X1,X2,?,Xn为总体X的一个样本.X,S分别为样本均值和样本方差,
试求
(1) (X1,X2,L,Xn)的分布律; (2)
E(X),D(X),E(S2)
inx??解 (1) 因为 P?X?x???e,所以P?X?x,LX?x??nP?X?x????ii11nniixi!i?1e?n?.
xi!x2!Lxn!i?1?xi(2) E?Xi???,D?Xi???,?i?1,2,L,n?
nn所以E?X??1?EXi??,D?X??12?DXi?1?,
ni?1ni?1n2?2??2??1?n21?1n?n22 E?S??E?X?X?EX?nX?EX?nX???iii????????n?1i?1???n?1?i?1??n?1?i?12???1??122??n????n??????????. ?n?1??n??11. 从总体N(3.4,62)中抽取容量为n的样本,如要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n至少应取多大? 解 X~N(3.4,36X?3.4),~N(0,1), n6n??n?n??nX?3.4?P1.4?X?5.4?P?????2??1?0.95, ?????3?6n?3???3???????n??0.975,n?35. ???3?c2x?a12. 设样本观察值x1,x2,?,xn的平均值为x,样本方差为Sx,作变换yi?i
2222得y1,y2,?,yn的样本平均值为y,样本方差为Sy,试证 x?a?cy,Sx?cSy.
相关推荐: