2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案
一、旋转
1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现:
(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是 ; 结论2:DM、MN的位置关系是 ; 拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】
试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.
试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,
∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,
∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又
∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,
∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.
考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.
2.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE. (1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题: (2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =【解析】
1m°. 2分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=详(1)证明:如图1中,
1m°. 2
∵∠BAC=∠DAE, ∴∠DAB=∠EAC, 在△DAB和△EAC中,
?AD=AE???DAB=?EAC, ?AB=AC?∴△DAB≌△EAC, ∴BD=EC.
(2)证明:如图2中,延长DC到E,使得DB=DE.
∵DB=DE,∠BDC=60°, ∴△BDE是等边三角形, ∴∠BD=BE,∠DBE=∠ABC=60°, ∴∠ABD=∠CBE, ∵AB=BC, ∴△ABD≌△CBE, ∴AD=EC,
∴BD=DE=DC+CE=DC+AD. ∴AD+CD=BD.
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.
由(1)可知△EAB≌△GAC, ∴∠1=∠2,BE=CG,
∵BD=DC,∠BDE=∠CDM,DE=DM, ∴△EDB≌△MDC,
∴EM=CM=CG,∠EBC=∠MCD, ∵∠EBC=∠ACF, ∴∠MCD=∠ACF, ∴∠FCM=∠ACB=∠ABC, ∴∠1=3=∠2,
∴∠FCG=∠ACB=∠MCF, ∵CF=CF,CG=CM, ∴△CFG≌△CFM, ∴FG=FM,
∵ED=DM,DF⊥EM, ∴FE=FM=FG, ∵AE=AG,AF=AF, ∴△AFE≌△AFG, ∴∠EAF=∠FAG=
1m°. 2点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.
3.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b. (1)如图1,当a=42时,求b的值;
(2)当a=4时,在图2中画出相应的图形并求出b的值;
(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.
【答案】(1)42;(2)b=8;(3)ab=32. 【解析】
试题分析:(1)由正方形ABCD的边长为4,可得AC=42 ,∠ACB=45°. 再CE=a=42,可得∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC; (2)通过证明△ACF∽△ECA,即可得; (3)通过证明△ACF∽△ECA,即可得.
试题解析:(1)∵正方形ABCD的边长为4,∴AC=42 ,∠ACB=45°. ∵CE=a=42,∴∠CAE=∠AEC=
45?=22.5°,∴∠CAF=∠EAF-∠CAE=22.5°,2∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42;
(2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC=∠AEC.
又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴8,即b=8. (3)ab=32.
提示:由(2)知可证△ACF∽△ECA,∴∴
ACCF42CF?,∴,∴CF=?ECCA442ACCF42b?,∴,∴ab=32. ?ECCAa42
4.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD. (1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;
(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE. ①求证:△ABE∽△ACD; ②计算:BD2+CE2的值.
【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170. 【解析】 【分析】
(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题; (2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.
②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算. 【详解】
(1)结论:BE=CD,BE⊥CD.
理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.
∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.
?AB?AC?在△CAD和△BAE中,∵??BAE??CAD,∴△CAD≌△BAE,∴CD=BE,
?AE?AD?∠ACD=∠ABE.
∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD. (2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.
∵∠CABB=∠EAD=90°,∴∠CAD=∠BAE.
AEAD==2,∴△ABE∽△ACD; ABAC②∵△ABE∽△ACD,∴∠AEB=∠CDA.
∵CA=3,AB=5,AD=6,AE=10,∴
∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°,∴DG⊥BE,∴∠AGD=∠BGD=90°,∴CE2=CG2+EG2,BD2=BG2+DG2,∴BD2+CE2=CG2+EG2+BG2+DG2. ∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.
【点睛】
本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.
5.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.
(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为 ,说明理由;
(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;
(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
【答案】(1)△FGH是等边三角形;(2)(a+b),最小值为【解析】
36?1;(3)△FGH的周长最大值为
223(a﹣b). 2试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、
(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;
3BD,求出BD的最大值和最小值即可解决问题; 2试题解析:解:(1)结论:△FGH是等边三角形.理由如下:
如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.
(3)首先证明△GFH的周长=3GF=
∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=∵DF=EF,DH=HC,∴FH=
1BD,GF∥BD,21EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,2∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60° ∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形. (2)如图2中,连接AF、EC.
易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF=22?12=3,在Rt△ABF中,BF=AB2?AF2 =6,∴BD=CE=BF﹣DF=6?1,∴FH=(3)存在.理由如下.
16?1EC=. 2213BD,∴△GFH的周长=3GF=BD,在△ABD
223中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为
2由(1)可知,△GFH是等边三角形,GF=
(a+b),最小值为
3(a﹣b). 2点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
6.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.
相关推荐: