∵AB⊥弦CD,
∴CG=DG,C正确; 的长为:故选:D.
【点评】本题考查的是垂径定理、弧长的计算、切线的性质,掌握弧长的计算公式l=
、
=π,D错误,
切线的性质定理以及垂径定理是解题的关键. 13.(4分)(2016?昆明)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是( ) A.
﹣
=20 B.
﹣
=20 C.
﹣
= D.
﹣
=
【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.
【解答】解:由题意可得, ﹣
=,
故选C.
【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程. 14.(4分)(2016?昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若其中结论正确的有( )
=,则3S△EDH=13S△DHC,
A.1个 B.2个 C.3个 D.4个 【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF; ②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;
③同②证明△EHF≌△DHC即可;
11
④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠
DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=
x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.
【解答】解:①∵四边形ABCD为正方形,EF∥AD, ∴EF=AD=CD,∠ACD=45°,∠GFC=90°, ∴△CFG为等腰直角三角形, ∴GF=FC,
∵EG=EF﹣GF,DF=CD﹣FC, ∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点, ∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,,
∴△EHF≌△DHC(SAS), ∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点, ∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,
,
∴△EHF≌△DHC(SAS),故③正确; ④∵
=,
∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点, ∴FH=GH,∠FHG=90°, ∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD, 在△EGH和△DFH中,
,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,
过H点作HM垂直于CD于M点,如图所示: 设HM=x,则DM=5x,DH=x,CD=6x, 则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2, ∴3S△EDH=13S△DHC,故④正确;
12
故选:D.
【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
三、综合题:共9题,满分70分
15.(5分)(2016?昆明)计算:20160﹣|﹣
|+
+2sin45°.
【分析】分别根据零次幂、实数的绝对值、负指数幂及特殊角的三角函数值进行计算即可. 【解答】解: 20160﹣|﹣=1﹣
﹣
|+
﹣
+2sin45°
+(31)1+2×
=1﹣+3+
=4.
【点评】本题主要考查实数的计算,掌握实数的零次幂、绝对值、负指数幂及特殊角的三角函数值是解题的关键. 16.(6分)(2016?昆明)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.
【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案. 【解答】证明:∵FC∥AB, ∴∠A=∠ECF,∠ADE=∠CFE, 在△ADE和△CFE中,
,
∴△ADE≌△CFE(AAS),
13
∴AE=CE. 【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理SSS、SAS、ASA、AAS、HL是解题的关键. 17.(7分)(2016?昆明)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1; (2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
【分析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可; (2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可; (3)找出A的对称点A′,连接BA′,与x轴交点即为P. 【解答】解:(1)如图1所示: (2)如图2所示:
(3)找出A的对称点A′(﹣3,﹣4), 连接BA′,与x轴交点即为P; 如图3所示:点P坐标为(2,0).
14
【点评】本题考查了利用平移变换作图、轴对称﹣最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键. 18.(7分)(2016?昆明)某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;
(1)这次抽样调查的样本容量是 50 ,并补全条形图;
15
相关推荐: